Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
N
nibio_graph_sem_seg
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maciej Wielgosz
nibio_graph_sem_seg
Commits
3a977c2b
Commit
3a977c2b
authored
2 years ago
by
Maciej Wielgosz
Browse files
Options
Downloads
Patches
Plain Diff
graph implementation of dgcnn
parent
18769c30
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
PyG_implementation/pyg_implementaion_main.py
+348
-0
348 additions, 0 deletions
PyG_implementation/pyg_implementaion_main.py
wandb_vis/log_point_cloud.py
+9
-2
9 additions, 2 deletions
wandb_vis/log_point_cloud.py
with
357 additions
and
2 deletions
PyG_implementation/pyg_implementaion_main.py
0 → 100644
+
348
−
0
View file @
3a977c2b
import
os
import
wandb
import
random
import
numpy
as
np
from
tqdm.auto
import
tqdm
import
torch
import
torch.nn.functional
as
F
from
torch_scatter
import
scatter
from
torchmetrics.functional
import
jaccard_index
import
torch_geometric.transforms
as
T
from
torch_geometric.datasets
import
ShapeNet
from
torch_geometric.loader
import
DataLoader
from
torch_geometric.nn
import
MLP
,
DynamicEdgeConv
wandb_project
=
"
pyg-point-cloud
"
#@param {"type": "string"} , maciej-wielgosz-nibio
wandb_run_name
=
"
train-dgcnn
"
#@param {"type": "string"}
wandb
.
init
(
entity
=
"
maciej-wielgosz-nibio
"
,
project
=
wandb_project
,
name
=
wandb_run_name
,
job_type
=
"
train
"
)
config
=
wandb
.
config
config
.
seed
=
42
config
.
device
=
'
cuda
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
random
.
seed
(
config
.
seed
)
torch
.
manual_seed
(
config
.
seed
)
device
=
torch
.
device
(
config
.
device
)
config
.
category
=
'
Car
'
#@param ["Bag", "Cap", "Car", "Chair", "Earphone", "Guitar", "Knife", "Lamp", "Laptop", "Motorbike", "Mug", "Pistol", "Rocket", "Skateboard", "Table"] {type:"raw"}
config
.
random_jitter_translation
=
1e-2
config
.
random_rotation_interval_x
=
15
config
.
random_rotation_interval_y
=
15
config
.
random_rotation_interval_z
=
15
config
.
validation_split
=
0.2
config
.
batch_size
=
4
config
.
num_workers
=
6
config
.
num_nearest_neighbours
=
30
config
.
aggregation_operator
=
"
max
"
config
.
dropout
=
0.5
config
.
initial_lr
=
1e-3
config
.
lr_scheduler_step_size
=
5
config
.
gamma
=
0.8
config
.
epochs
=
1
transform
=
T
.
Compose
([
T
.
RandomJitter
(
config
.
random_jitter_translation
),
T
.
RandomRotate
(
config
.
random_rotation_interval_x
,
axis
=
0
),
T
.
RandomRotate
(
config
.
random_rotation_interval_y
,
axis
=
1
),
T
.
RandomRotate
(
config
.
random_rotation_interval_z
,
axis
=
2
)
])
pre_transform
=
T
.
NormalizeScale
()
dataset_path
=
os
.
path
.
join
(
'
ShapeNet
'
,
config
.
category
)
train_val_dataset
=
ShapeNet
(
dataset_path
,
config
.
category
,
split
=
'
trainval
'
,
transform
=
transform
,
pre_transform
=
pre_transform
)
segmentation_class_frequency
=
{}
for
idx
in
tqdm
(
range
(
len
(
train_val_dataset
))):
pc_viz
=
train_val_dataset
[
idx
].
pos
.
numpy
().
tolist
()
segmentation_label
=
train_val_dataset
[
idx
].
y
.
numpy
().
tolist
()
for
label
in
set
(
segmentation_label
):
segmentation_class_frequency
[
label
]
=
segmentation_label
.
count
(
label
)
class_offset
=
min
(
list
(
segmentation_class_frequency
.
keys
()))
print
(
"
Class Offset:
"
,
class_offset
)
for
idx
in
range
(
len
(
train_val_dataset
)):
train_val_dataset
[
idx
].
y
-=
class_offset
num_train_examples
=
int
((
1
-
config
.
validation_split
)
*
len
(
train_val_dataset
))
train_dataset
=
train_val_dataset
[:
num_train_examples
]
val_dataset
=
train_val_dataset
[
num_train_examples
:]
train_loader
=
DataLoader
(
train_dataset
,
batch_size
=
config
.
batch_size
,
shuffle
=
True
,
num_workers
=
config
.
num_workers
)
val_loader
=
DataLoader
(
val_dataset
,
batch_size
=
config
.
batch_size
,
shuffle
=
False
,
num_workers
=
config
.
num_workers
)
visualization_loader
=
DataLoader
(
val_dataset
[:
10
],
batch_size
=
1
,
shuffle
=
False
,
num_workers
=
config
.
num_workers
)
class
DGCNN
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
out_channels
,
k
=
30
,
aggr
=
'
max
'
):
super
().
__init__
()
self
.
conv1
=
DynamicEdgeConv
(
MLP
([
2
*
6
,
64
,
64
]),
k
,
aggr
)
self
.
conv2
=
DynamicEdgeConv
(
MLP
([
2
*
64
,
64
,
64
]),
k
,
aggr
)
self
.
conv3
=
DynamicEdgeConv
(
MLP
([
2
*
64
,
64
,
64
]),
k
,
aggr
)
self
.
mlp
=
MLP
(
[
3
*
64
,
1024
,
256
,
128
,
out_channels
],
dropout
=
0.5
,
norm
=
None
)
def
forward
(
self
,
data
):
x
,
pos
,
batch
=
data
.
x
,
data
.
pos
,
data
.
batch
x0
=
torch
.
cat
([
x
,
pos
],
dim
=-
1
)
x1
=
self
.
conv1
(
x0
,
batch
)
x2
=
self
.
conv2
(
x1
,
batch
)
x3
=
self
.
conv3
(
x2
,
batch
)
out
=
self
.
mlp
(
torch
.
cat
([
x1
,
x2
,
x3
],
dim
=
1
))
return
F
.
log_softmax
(
out
,
dim
=
1
)
config
.
num_classes
=
train_dataset
.
num_classes
model
=
DGCNN
(
out_channels
=
train_dataset
.
num_classes
,
k
=
config
.
num_nearest_neighbours
,
aggr
=
config
.
aggregation_operator
).
to
(
device
)
optimizer
=
torch
.
optim
.
Adam
(
model
.
parameters
(),
lr
=
config
.
initial_lr
)
scheduler
=
torch
.
optim
.
lr_scheduler
.
StepLR
(
optimizer
,
step_size
=
config
.
lr_scheduler_step_size
,
gamma
=
config
.
gamma
)
def
train_step
(
epoch
):
model
.
train
()
ious
,
categories
=
[],
[]
total_loss
=
correct_nodes
=
total_nodes
=
0
y_map
=
torch
.
empty
(
train_loader
.
dataset
.
num_classes
,
device
=
device
).
long
()
num_train_examples
=
len
(
train_loader
)
progress_bar
=
tqdm
(
train_loader
,
desc
=
f
"
Training Epoch
{
epoch
}
/
{
config
.
epochs
}
"
)
for
data
in
progress_bar
:
data
=
data
.
to
(
device
)
optimizer
.
zero_grad
()
outs
=
model
(
data
)
loss
=
F
.
nll_loss
(
outs
,
data
.
y
)
loss
.
backward
()
optimizer
.
step
()
total_loss
+=
loss
.
item
()
correct_nodes
+=
outs
.
argmax
(
dim
=
1
).
eq
(
data
.
y
).
sum
().
item
()
total_nodes
+=
data
.
num_nodes
sizes
=
(
data
.
ptr
[
1
:]
-
data
.
ptr
[:
-
1
]).
tolist
()
for
out
,
y
,
category
in
zip
(
outs
.
split
(
sizes
),
data
.
y
.
split
(
sizes
),
data
.
category
.
tolist
()):
category
=
list
(
ShapeNet
.
seg_classes
.
keys
())[
category
]
part
=
ShapeNet
.
seg_classes
[
category
]
part
=
torch
.
tensor
(
part
,
device
=
device
)
y_map
[
part
]
=
torch
.
arange
(
part
.
size
(
0
),
device
=
device
)
iou
=
jaccard_index
(
out
[:,
part
].
argmax
(
dim
=-
1
),
y_map
[
y
],
task
=
"
multiclass
"
,
num_classes
=
part
.
size
(
0
)
)
ious
.
append
(
iou
)
categories
.
append
(
data
.
category
)
iou
=
torch
.
tensor
(
ious
,
device
=
device
)
category
=
torch
.
cat
(
categories
,
dim
=
0
)
mean_iou
=
float
(
scatter
(
iou
,
category
,
reduce
=
'
mean
'
).
mean
())
return
{
"
Train/Loss
"
:
total_loss
/
num_train_examples
,
"
Train/Accuracy
"
:
correct_nodes
/
total_nodes
,
"
Train/IoU
"
:
mean_iou
}
@torch.no_grad
()
def
val_step
(
epoch
):
model
.
eval
()
ious
,
categories
=
[],
[]
total_loss
=
correct_nodes
=
total_nodes
=
0
y_map
=
torch
.
empty
(
val_loader
.
dataset
.
num_classes
,
device
=
device
).
long
()
num_val_examples
=
len
(
val_loader
)
progress_bar
=
tqdm
(
val_loader
,
desc
=
f
"
Validating Epoch
{
epoch
}
/
{
config
.
epochs
}
"
)
for
data
in
progress_bar
:
data
=
data
.
to
(
device
)
outs
=
model
(
data
)
loss
=
F
.
nll_loss
(
outs
,
data
.
y
)
total_loss
+=
loss
.
item
()
correct_nodes
+=
outs
.
argmax
(
dim
=
1
).
eq
(
data
.
y
).
sum
().
item
()
total_nodes
+=
data
.
num_nodes
sizes
=
(
data
.
ptr
[
1
:]
-
data
.
ptr
[:
-
1
]).
tolist
()
for
out
,
y
,
category
in
zip
(
outs
.
split
(
sizes
),
data
.
y
.
split
(
sizes
),
data
.
category
.
tolist
()):
category
=
list
(
ShapeNet
.
seg_classes
.
keys
())[
category
]
part
=
ShapeNet
.
seg_classes
[
category
]
part
=
torch
.
tensor
(
part
,
device
=
device
)
y_map
[
part
]
=
torch
.
arange
(
part
.
size
(
0
),
device
=
device
)
iou
=
jaccard_index
(
out
[:,
part
].
argmax
(
dim
=-
1
),
y_map
[
y
],
task
=
"
multiclass
"
,
num_classes
=
part
.
size
(
0
)
)
ious
.
append
(
iou
)
categories
.
append
(
data
.
category
)
iou
=
torch
.
tensor
(
ious
,
device
=
device
)
category
=
torch
.
cat
(
categories
,
dim
=
0
)
mean_iou
=
float
(
scatter
(
iou
,
category
,
reduce
=
'
mean
'
).
mean
())
return
{
"
Validation/Loss
"
:
total_loss
/
num_val_examples
,
"
Validation/Accuracy
"
:
correct_nodes
/
total_nodes
,
"
Validation/IoU
"
:
mean_iou
}
@torch.no_grad
()
def
visualization_step
(
epoch
,
table
):
model
.
eval
()
for
data
in
tqdm
(
visualization_loader
):
data
=
data
.
to
(
device
)
outs
=
model
(
data
)
predicted_labels
=
outs
.
argmax
(
dim
=
1
)
accuracy
=
predicted_labels
.
eq
(
data
.
y
).
sum
().
item
()
/
data
.
num_nodes
sizes
=
(
data
.
ptr
[
1
:]
-
data
.
ptr
[:
-
1
]).
tolist
()
ious
,
categories
=
[],
[]
y_map
=
torch
.
empty
(
visualization_loader
.
dataset
.
num_classes
,
device
=
device
).
long
()
for
out
,
y
,
category
in
zip
(
outs
.
split
(
sizes
),
data
.
y
.
split
(
sizes
),
data
.
category
.
tolist
()
):
category
=
list
(
ShapeNet
.
seg_classes
.
keys
())[
category
]
part
=
ShapeNet
.
seg_classes
[
category
]
part
=
torch
.
tensor
(
part
,
device
=
device
)
y_map
[
part
]
=
torch
.
arange
(
part
.
size
(
0
),
device
=
device
)
iou
=
jaccard_index
(
out
[:,
part
].
argmax
(
dim
=-
1
),
y_map
[
y
],
task
=
"
multiclass
"
,
num_classes
=
part
.
size
(
0
)
)
ious
.
append
(
iou
)
categories
.
append
(
data
.
category
)
iou
=
torch
.
tensor
(
ious
,
device
=
device
)
category
=
torch
.
cat
(
categories
,
dim
=
0
)
mean_iou
=
float
(
scatter
(
iou
,
category
,
reduce
=
'
mean
'
).
mean
())
gt_pc_viz
=
data
.
pos
.
cpu
().
numpy
().
tolist
()
segmentation_label
=
data
.
y
.
cpu
().
numpy
().
tolist
()
frequency_dict
=
{
key
:
0
for
key
in
segmentation_class_frequency
.
keys
()}
for
label
in
set
(
segmentation_label
):
frequency_dict
[
label
]
=
segmentation_label
.
count
(
label
)
for
j
in
range
(
len
(
gt_pc_viz
)):
# gt_pc_viz[j] += [segmentation_label[j] + 1 - class_offset]
gt_pc_viz
[
j
]
+=
[
segmentation_label
[
j
]
+
1
]
predicted_pc_viz
=
data
.
pos
.
cpu
().
numpy
().
tolist
()
segmentation_label
=
data
.
y
.
cpu
().
numpy
().
tolist
()
frequency_dict
=
{
key
:
0
for
key
in
segmentation_class_frequency
.
keys
()}
for
label
in
set
(
segmentation_label
):
frequency_dict
[
label
]
=
segmentation_label
.
count
(
label
)
for
j
in
range
(
len
(
predicted_pc_viz
)):
# predicted_pc_viz[j] += [segmentation_label[j] + 1 - class_offset]
predicted_pc_viz
[
j
]
+=
[
segmentation_label
[
j
]
+
1
]
table
.
add_data
(
epoch
,
wandb
.
Object3D
(
np
.
array
(
gt_pc_viz
)),
wandb
.
Object3D
(
np
.
array
(
predicted_pc_viz
)),
accuracy
,
mean_iou
)
return
table
def
save_checkpoint
(
epoch
):
"""
Save model checkpoints as Weights & Biases artifacts
"""
torch
.
save
({
'
epoch
'
:
epoch
,
'
model_state_dict
'
:
model
.
state_dict
(),
'
optimizer_state_dict
'
:
optimizer
.
state_dict
()
},
"
checkpoint.pt
"
)
artifact_name
=
wandb
.
util
.
make_artifact_name_safe
(
f
"
{
wandb
.
run
.
name
}
-
{
wandb
.
run
.
id
}
-checkpoint
"
)
checkpoint_artifact
=
wandb
.
Artifact
(
artifact_name
,
type
=
"
checkpoint
"
)
checkpoint_artifact
.
add_file
(
"
checkpoint.pt
"
)
wandb
.
log_artifact
(
checkpoint_artifact
,
aliases
=
[
"
latest
"
,
f
"
epoch-
{
epoch
}
"
]
)
table
=
wandb
.
Table
(
columns
=
[
"
Epoch
"
,
"
Ground-Truth
"
,
"
Prediction
"
,
"
Accuracy
"
,
"
IoU
"
])
for
epoch
in
range
(
1
,
config
.
epochs
+
1
):
train_metrics
=
train_step
(
epoch
)
val_metrics
=
val_step
(
epoch
)
metrics
=
{
**
train_metrics
,
**
val_metrics
}
metrics
[
"
learning_rate
"
]
=
scheduler
.
get_last_lr
()[
-
1
]
wandb
.
log
(
metrics
)
table
=
visualization_step
(
epoch
,
table
)
scheduler
.
step
()
save_checkpoint
(
epoch
)
wandb
.
log
({
"
Evaluation
"
:
table
})
wandb
.
finish
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
wandb_vis/log_point_cloud.py
+
9
−
2
View file @
3a977c2b
...
...
@@ -27,8 +27,15 @@ class LogPointCloud:
def
compute_metrics
(
self
,
label_gt
,
label_pred
):
# map labels_gt and labels_pred to torch tensors
iou
=
shape_iou
(
label_pred
,
label_gt
)
label_gt
=
torch
.
tensor
(
label_gt
)
label_pred
=
torch
.
tensor
(
label_pred
)
# check label_gt and label_pred are numpy arrays
# if the are lists, convert them to numpy arrays
if
type
(
label_gt
)
==
list
:
label_gt
=
np
.
array
(
label_gt
)
if
type
(
label_pred
)
==
list
:
label_pred
=
np
.
array
(
label_pred
)
label_gt
=
torch
.
from_numpy
(
label_gt
)
label_pred
=
torch
.
from_numpy
(
label_pred
)
# compute metrics
accuracy
=
Accuracy
(
task
=
"
multiclass
"
,
num_classes
=
50
)
precision
=
Precision
(
task
=
"
multiclass
"
,
num_classes
=
50
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment