Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
point-transformer
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maciej Wielgosz
point-transformer
Commits
d04d047b
Commit
d04d047b
authored
2 years ago
by
Maciej Wielgosz
Browse files
Options
Downloads
Patches
Plain Diff
update with val and test - dgcnn
parent
865078f8
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
dgcnn/config.yaml
+4
-3
4 additions, 3 deletions
dgcnn/config.yaml
dgcnn/dgcnn_train_pl.py
+69
-8
69 additions, 8 deletions
dgcnn/dgcnn_train_pl.py
with
73 additions
and
11 deletions
dgcnn/config.yaml
+
4
−
3
View file @
d04d047b
# create a config file
training
:
max_epochs
:
2
max_epochs
:
4
lr
:
0.0001
batch_size
:
4
shuffle
:
True
...
...
@@ -19,9 +19,10 @@ data:
norm
:
true
wandb
:
use_wandb
:
false
use_wandb
:
true
watch_model
:
false
project
:
dgcnn
name
:
dgcnn
name
:
dgcnn
-train-val-test
entity
:
maciej-wielgosz-nibio
This diff is collapsed.
Click to expand it.
dgcnn/dgcnn_train_pl.py
+
69
−
8
View file @
d04d047b
...
...
@@ -27,11 +27,25 @@ class DGCNNLightning(pl.LightningModule):
self
.
log
(
'
train_loss
'
,
loss
)
return
loss
def
validation_step
(
self
,
batch
,
batch_idx
):
points
,
_
,
class_name
=
batch
pred
=
self
(
points
)
loss
=
F
.
cross_entropy
(
pred
,
class_name
,
reduction
=
'
mean
'
,
ignore_index
=
255
)
self
.
log
(
'
val_loss
'
,
loss
)
return
loss
def
test_step
(
self
,
batch
,
batch_idx
):
points
,
_
,
class_name
=
batch
pred
=
self
(
points
)
loss
=
F
.
cross_entropy
(
pred
,
class_name
,
reduction
=
'
mean
'
,
ignore_index
=
255
)
self
.
log
(
'
test_loss
'
,
loss
)
return
loss
def
configure_optimizers
(
self
):
optimizer
=
torch
.
optim
.
Adam
(
self
.
parameters
(),
lr
=
config
[
'
training
'
][
'
lr
'
])
return
optimizer
# get data
# get
train
data
shapenet_data_train
=
ShapenetDataDgcnn
(
root
=
'
/home/nibio/mutable-outside-world/code/oracle_gpu_runs/data/shapenet
'
,
npoints
=
config
[
'
data
'
][
'
npoints
'
],
...
...
@@ -43,7 +57,31 @@ shapenet_data_train = ShapenetDataDgcnn(
norm
=
config
[
'
data
'
][
'
norm
'
]
)
# create a dataloader
# get val data
shapenet_data_val
=
ShapenetDataDgcnn
(
root
=
'
/home/nibio/mutable-outside-world/code/oracle_gpu_runs/data/shapenet
'
,
npoints
=
config
[
'
data
'
][
'
npoints
'
],
return_cls_label
=
True
,
small_data
=
config
[
'
data
'
][
'
small_data
'
],
small_data_size
=
config
[
'
data
'
][
'
small_data_size
'
],
just_one_class
=
config
[
'
data
'
][
'
just_one_class
'
],
split
=
'
val
'
,
norm
=
config
[
'
data
'
][
'
norm
'
]
)
# get test data
shapenet_data_test
=
ShapenetDataDgcnn
(
root
=
'
/home/nibio/mutable-outside-world/code/oracle_gpu_runs/data/shapenet
'
,
npoints
=
config
[
'
data
'
][
'
npoints
'
],
return_cls_label
=
True
,
small_data
=
config
[
'
data
'
][
'
small_data
'
],
small_data_size
=
config
[
'
data
'
][
'
small_data_size
'
],
just_one_class
=
config
[
'
data
'
][
'
just_one_class
'
],
split
=
'
test
'
,
norm
=
config
[
'
data
'
][
'
norm
'
]
)
# create train dataloader
dataloader_train
=
torch
.
utils
.
data
.
DataLoader
(
shapenet_data_train
,
batch_size
=
config
[
'
training
'
][
'
batch_size
'
],
...
...
@@ -52,6 +90,24 @@ dataloader_train = torch.utils.data.DataLoader(
drop_last
=
True
)
# create val dataloader
dataloader_val
=
torch
.
utils
.
data
.
DataLoader
(
shapenet_data_val
,
batch_size
=
config
[
'
training
'
][
'
batch_size
'
],
shuffle
=
config
[
'
training
'
][
'
shuffle
'
],
num_workers
=
config
[
'
training
'
][
'
num_workers
'
],
drop_last
=
True
)
# create test dataloader
dataloader_test
=
torch
.
utils
.
data
.
DataLoader
(
shapenet_data_test
,
batch_size
=
config
[
'
training
'
][
'
batch_size
'
],
shuffle
=
config
[
'
training
'
][
'
shuffle
'
],
num_workers
=
config
[
'
training
'
][
'
num_workers
'
],
drop_last
=
True
)
# Initialize a trainer
if
config
[
'
wandb
'
][
'
use_wandb
'
]:
...
...
@@ -59,7 +115,7 @@ if config['wandb']['use_wandb']:
trainer
=
pl
.
Trainer
(
strategy
=
DDPStrategy
(
find_unused_parameters
=
True
),
accelerator
=
"
auto
"
,
devices
=
config
[
'
wandb
'
][
'
devices
'
],
devices
=
config
[
'
training
'
][
'
devices
'
],
max_epochs
=
config
[
'
training
'
][
'
max_epochs
'
],
logger
=
wandb_logger
)
...
...
@@ -67,15 +123,20 @@ else:
trainer
=
pl
.
Trainer
(
strategy
=
DDPStrategy
(
find_unused_parameters
=
True
),
accelerator
=
"
auto
"
,
devices
=
[
0
],
max_epochs
=
3
devices
=
config
[
'
training
'
][
'
devices
'
],
max_epochs
=
config
[
'
training
'
][
'
max_epochs
'
]
)
# Initialize a model
model
=
DGCNNLightning
(
num_classes
=
16
)
if
config
[
'
wandb
'
][
'
use_wandb
'
]:
wandb_logger
.
watch
(
model
)
# Train the model on gpu
trainer
.
fit
(
model
,
dataloader_train
)
if
config
[
'
wandb
'
][
'
watch_model
'
]:
wandb_logger
.
watch
(
model
)
# Train the model on gpu and validate every epoch
trainer
.
fit
(
model
,
dataloader_train
,
dataloader_val
)
# Test the model on gpu
trainer
.
test
(
model
,
dataloader_val
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment