Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
instance_segmentation_classic
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maciej Wielgosz
instance_segmentation_classic
Commits
8c2077f7
Commit
8c2077f7
authored
1 year ago
by
Maciej Wielgosz
Browse files
Options
Downloads
Patches
Plain Diff
sparsification implemented
parent
64725988
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
nibio_preprocessing/sparsify_las_based_sq_m.py
+24
-17
24 additions, 17 deletions
nibio_preprocessing/sparsify_las_based_sq_m.py
nibio_preprocessing/sparsify_las_based_sq_m_in_folder.py
+87
-0
87 additions, 0 deletions
nibio_preprocessing/sparsify_las_based_sq_m_in_folder.py
with
111 additions
and
17 deletions
nibio_preprocessing/sparsify_las_based_sq_m.py
+
24
−
17
View file @
8c2077f7
...
...
@@ -7,15 +7,24 @@ from scipy.spatial import ConvexHull
import
logging
class
Sparsify
PointCloudToDensity
:
class
Sparsify
LasBasedSqM
:
def
__init__
(
self
,
input_file
,
output_folder
=
None
,
target_density
=
10
,
verbose
=
False
):
self
.
input_file
=
input_file
if
output_folder
is
None
:
self
.
output_folder
=
os
.
path
.
dirname
(
input_file
)
self
.
target_density
=
target_density
self
.
desity
=
None
self
.
new_point_cloud_density
=
None
self
.
verbose
=
verbose
# Initialize logging
self
.
logger
=
logging
.
getLogger
(
__name__
)
if
self
.
verbose
:
logging
.
info
(
f
"
Initialized with input file:
{
self
.
input_file
}
, target density:
{
self
.
target_density
}
"
)
self
.
logger
.
setLevel
(
logging
.
INFO
)
else
:
self
.
logger
.
setLevel
(
logging
.
WARNING
)
self
.
logger
.
info
(
f
"
Initialized with input file:
{
self
.
input_file
}
, target density:
{
self
.
target_density
}
"
)
def
calculate_density_convex_hull
(
self
,
las
):
points_3D
=
np
.
vstack
((
las
.
x
,
las
.
y
,
las
.
z
)).
transpose
()
...
...
@@ -27,20 +36,18 @@ class SparsifyPointCloudToDensity:
return
density
def
sparsify
(
self
,
point_cloud
):
density
=
self
.
calculate_density_convex_hull
(
point_cloud
)
if
self
.
verbose
:
logging
.
info
(
f
"
Point cloud density:
{
density
}
points per square meter.
"
)
self
.
density
=
self
.
calculate_density_convex_hull
(
point_cloud
)
self
.
logger
.
info
(
f
"
Point cloud density:
{
self
.
density
}
points per square meter.
"
)
x
=
point_cloud
.
x
keep_count
=
int
(
len
(
x
)
*
(
self
.
target_density
/
density
))
keep_count
=
int
(
len
(
x
)
*
(
self
.
target_density
/
self
.
density
))
sampled_indices
=
random
.
sample
(
range
(
len
(
x
)),
keep_count
)
filtered_point_cloud
=
point_cloud
.
points
[
sampled_indices
]
if
self
.
verbose
:
logging
.
info
(
f
"
Reduced point cloud size from
{
len
(
x
)
}
to
{
len
(
filtered_point_cloud
)
}
points.
"
)
logging
.
info
(
f
"
Reduced point cloud by
{
(
1
-
len
(
filtered_point_cloud
)
/
len
(
x
))
*
100
}
%.
"
)
density
=
self
.
calculate_density_convex_hull
(
filtered_point_cloud
)
density
=
round
(
density
,
2
)
logging
.
info
(
f
"
Filtered point cloud density:
{
density
}
points per square meter.
"
)
self
.
new_point_cloud_density
=
self
.
calculate_density_convex_hull
(
filtered_point_cloud
)
self
.
logger
.
info
(
f
"
Reduced point cloud size from
{
len
(
x
)
}
to
{
len
(
filtered_point_cloud
)
}
points.
"
)
self
.
logger
.
info
(
f
"
Reduced point cloud by
{
(
1
-
len
(
filtered_point_cloud
)
/
len
(
x
))
*
100
}
%.
"
)
self
.
logger
.
info
(
f
"
New point cloud density:
{
self
.
new_point_cloud_density
}
points per square meter.
"
)
return
filtered_point_cloud
def
process
(
self
):
...
...
@@ -48,18 +55,18 @@ class SparsifyPointCloudToDensity:
os
.
makedirs
(
self
.
output_folder
)
inFile
=
laspy
.
read
(
self
.
input_file
)
filtered_points
=
self
.
sparsify
(
inFile
)
if
self
.
verbose
:
logging
.
info
(
"
Creating output laspy object
"
)
self
.
logger
.
info
(
"
Creating output laspy object
"
)
outFile
=
laspy
.
create
(
point_format
=
inFile
.
point_format
,
file_version
=
inFile
.
header
.
version
)
outFile
.
header
=
inFile
.
header
outFile
.
points
=
filtered_points
# save the point cloud to the output folder with the same name as the input file but suffixed with _sparse and desired density
output_file_path
=
os
.
path
.
join
(
self
.
output_folder
,
os
.
path
.
basename
(
self
.
input_file
).
replace
(
"
.las
"
,
f
"
_sparse_
{
self
.
target_density
}
.las
"
))
outFile
.
write
(
output_file_path
)
if
__name__
==
"
__main__
"
:
# Configure logging
logging
.
basicConfig
(
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"
-i
"
,
"
--input_file
"
,
help
=
"
The .las file to sparsify.
"
)
parser
.
add_argument
(
"
--output_folder
"
,
default
=
None
,
help
=
"
The folder where the sparse point cloud will be saved.
"
)
...
...
@@ -67,5 +74,5 @@ if __name__ == "__main__":
parser
.
add_argument
(
"
-v
"
,
"
--verbose
"
,
help
=
"
Enable verbose logging
"
,
action
=
"
store_true
"
)
args
=
parser
.
parse_args
()
sparsifier
=
Sparsify
PointCloudToDensity
(
args
.
input_file
,
args
.
output_folder
,
args
.
target_density
,
args
.
verbose
)
sparsifier
=
Sparsify
LasBasedSqM
(
args
.
input_file
,
args
.
output_folder
,
args
.
target_density
,
args
.
verbose
)
sparsifier
.
process
()
This diff is collapsed.
Click to expand it.
nibio_preprocessing/sparsify_las_based_sq_m_in_folder.py
0 → 100644
+
87
−
0
View file @
8c2077f7
import
argparse
import
os
import
logging
import
laspy
from
tqdm
import
tqdm
from
nibio_preprocessing.sparsify_las_based_sq_m
import
SparsifyLasBasedSqM
class
SparsifyLasBasedSqMInFolder
(
SparsifyLasBasedSqM
):
def
__init__
(
self
,
input_folder
,
output_folder
=
None
,
target_density
=
10
,
verbose
=
False
):
super
().
__init__
(
input_file
=
None
,
output_folder
=
output_folder
,
target_density
=
target_density
,
verbose
=
verbose
)
self
.
directory_with_point_clouds
=
input_folder
self
.
output_folder
=
output_folder
self
.
report
=
None
# Initialize logging for the subclass
self
.
logger
=
logging
.
getLogger
(
__name__
)
if
self
.
verbose
:
self
.
logger
.
setLevel
(
logging
.
INFO
)
else
:
self
.
logger
.
setLevel
(
logging
.
WARNING
)
def
reduce_point_clouds
(
self
):
# get paths to all point clouds in the directory and subdirectories
point_cloud_paths
=
[]
# create output folder if it doesn't exist, if it does, delete all files in it
if
not
os
.
path
.
exists
(
self
.
output_folder
):
os
.
makedirs
(
self
.
output_folder
)
else
:
files
=
os
.
listdir
(
self
.
output_folder
)
for
f
in
files
:
os
.
remove
(
os
.
path
.
join
(
self
.
output_folder
,
f
))
for
root
,
dirs
,
files
in
os
.
walk
(
self
.
directory_with_point_clouds
):
for
file
in
files
:
if
file
.
endswith
(
"
.las
"
):
point_cloud_paths
.
append
(
os
.
path
.
join
(
root
,
file
))
self
.
logger
.
info
(
f
"
Found
{
len
(
point_cloud_paths
)
}
point clouds.
"
)
# iterate over all point clouds and save outputs to the output folder
for
point_cloud_path
in
tqdm
(
point_cloud_paths
):
self
.
input_file
=
point_cloud_path
self
.
process
()
# append information about the point cloud to a report as a dictionary
if
self
.
report
is
None
:
self
.
report
=
{
"
input_file
"
:
[
self
.
input_file
],
"
density
"
:
[
self
.
density
],
"
target_density
"
:
[
self
.
target_density
],
"
new_density
"
:
[
self
.
new_point_cloud_density
]
}
else
:
self
.
report
[
"
input_file
"
].
append
(
self
.
input_file
)
self
.
report
[
"
density
"
].
append
(
self
.
density
),
self
.
report
[
"
target_density
"
].
append
(
self
.
target_density
),
self
.
report
[
"
new_density
"
].
append
(
self
.
new_point_cloud_density
)
if
self
.
verbose
:
# print the dictionary as a pandas dataframe
import
pandas
as
pd
df
=
pd
.
DataFrame
.
from_dict
(
self
.
report
,
orient
=
"
index
"
).
transpose
()
print
(
df
)
if
__name__
==
"
__main__
"
:
# Configure logging
logging
.
basicConfig
(
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"
-i
"
,
"
--input_folder
"
,
help
=
"
The folder with .las files to sparsify.
"
)
parser
.
add_argument
(
"
-o
"
,
"
--output_folder
"
,
default
=
None
,
help
=
"
The folder where the sparse point clouds will be saved.
"
)
parser
.
add_argument
(
"
-d
"
,
"
--target_density
"
,
help
=
"
The target density in points per square meter.
"
,
default
=
10
,
type
=
int
)
parser
.
add_argument
(
"
-v
"
,
"
--verbose
"
,
action
=
"
store_true
"
,
help
=
"
Print information about the process
"
)
args
=
parser
.
parse_args
()
sparsifier
=
SparsifyLasBasedSqMInFolder
(
args
.
input_folder
,
args
.
output_folder
,
args
.
target_density
,
args
.
verbose
)
sparsifier
.
reduce_point_clouds
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment