Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
instance_segmentation_classic
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maciej Wielgosz
instance_segmentation_classic
Commits
3fb4365a
Commit
3fb4365a
authored
1 year ago
by
Maciej Wielgosz
Browse files
Options
Downloads
Patches
Plain Diff
implemented from scratch distance from the ground filtering based on DEM
parent
dac56769
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
nibio_preprocessing/distance_filtering_dem_based.py
+153
-0
153 additions, 0 deletions
nibio_preprocessing/distance_filtering_dem_based.py
with
153 additions
and
0 deletions
nibio_preprocessing/distance_filtering_dem_based.py
0 → 100644
+
153
−
0
View file @
3fb4365a
import
argparse
import
laspy
import
numpy
as
np
import
pandas
as
pd
from
scipy.interpolate
import
griddata
from
scipy.spatial
import
KDTree
class
DistanceFilteringDemBased
(
object
):
# MLS data : 1 - ground, 2 - vegetation, 3 - CWD, 4 - trunk
GROUND_CLASS
=
1
TARGET_CLASS
=
2
def
__init__
(
self
,
las_file
,
distance
,
verbose
=
False
):
# compute distance filtering based on DEM
# remove points which are smaller than distance from the DEM
# low vegetation - 0.01 m
self
.
point_cloud_file
=
las_file
self
.
distance
=
distance
self
.
verbose
=
verbose
def
read_las_and_put_to_pandas
(
self
,
las_file
):
# Read the file
file_content
=
laspy
.
read
(
las_file
)
# Put x, y, z, label into a numpy array
points
=
np
.
vstack
((
file_content
.
x
,
file_content
.
y
,
file_content
.
z
,
file_content
.
label
,
file_content
.
treeID
)).
T
# Put x, y, z, label into a pandas dataframe
points_df
=
pd
.
DataFrame
(
points
,
columns
=
[
'
x
'
,
'
y
'
,
'
z
'
,
'
label
'
,
'
treeID
'
])
# get points which belong to the ground class
ground_points
=
points_df
[
points_df
[
'
label
'
]
==
self
.
GROUND_CLASS
]
# get points which belong to the target class
target_points
=
points_df
[
points_df
[
'
label
'
]
==
self
.
TARGET_CLASS
]
# get just x, y, z columns from ground_points
ground_points
=
ground_points
[[
'
x
'
,
'
y
'
,
'
z
'
]]
# get just x, y, z columns from target_points
target_points
=
target_points
[[
'
x
'
,
'
y
'
,
'
z
'
]]
return
points_df
,
ground_points
,
target_points
def
compute_dem_for_ground
(
self
,
ground_points
):
# DEM - Digital Elevation Model
# create digital elevation model (DEM) from label 1 points
x
=
ground_points
[
'
x
'
]
y
=
ground_points
[
'
y
'
]
z
=
ground_points
[
'
z
'
]
# create a grid of points
xi
=
np
.
linspace
(
x
.
min
(),
x
.
max
(),
1000
)
yi
=
np
.
linspace
(
y
.
min
(),
y
.
max
(),
1000
)
xi
,
yi
=
np
.
meshgrid
(
xi
,
yi
)
# interpolate
zi
=
griddata
((
x
,
y
),
z
,
(
xi
,
yi
),
method
=
'
linear
'
)
# fill the NaN values and missing and numertical values with 0
zi
=
np
.
nan_to_num
(
zi
,
copy
=
False
)
# replace non-numerical values with 0
zi
[
zi
==
np
.
inf
]
=
0
# reduce precision of the DEM to 2 decimal places
zi
=
np
.
around
(
zi
,
decimals
=
2
)
# put DEM into pandas dataframe
dem
=
pd
.
DataFrame
({
'
x
'
:
xi
.
flatten
(),
'
y
'
:
yi
.
flatten
(),
'
z
'
:
zi
.
flatten
(),
})
return
dem
def
compute_distance_between_dem_and_target
(
self
,
dem
,
target_points
):
original_target_points
=
target_points
.
copy
()
target_points
=
target_points
.
values
# Create the KD-tree using the DEM data
dem_tree
=
KDTree
(
dem
[:,
:
2
])
# Compute distances for all target points
_
,
id
=
dem_tree
.
query
(
target_points
[:,
:
2
],
workers
=-
1
)
# get distance in z direction between target points and dem
original_target_points
[
'
z_distance
'
]
=
original_target_points
[
'
z
'
]
-
dem
[
id
,
2
]
# add the distance in z direction to the original dataframe as the column 'z_distance'
original_target_points
[
'
z_distance
'
]
=
original_target_points
[
'
z_distance
'
].
values
return
original_target_points
def
filter_points
(
self
,
target_points_with_distances
):
# filter points
target_points_with_distances
=
target_points_with_distances
[
target_points_with_distances
[
'
z_distance
'
]
<
self
.
distance
]
return
target_points_with_distances
def
update_las_file
(
self
,
points_df
,
target_points_with_distances
):
# remove all the points which belong to the target class and are in the target_points_with_distances dataframe
points_df
=
points_df
[
~
points_df
.
isin
(
target_points_with_distances
)].
dropna
()
return
points_df
def
save_las_file
(
self
):
# save las file
pass
def
run
(
self
):
points_df
,
ground_points
,
target_points
=
self
.
read_las_and_put_to_pandas
(
las_file
=
self
.
point_cloud_file
)
dem
=
self
.
compute_dem_for_ground
(
ground_points
=
ground_points
)
# save pandas dataframe to csv
dem
.
to_csv
(
'
maciek/dem_from_class.csv
'
,
index
=
False
,
header
=
True
,
sep
=
'
,
'
)
target_points_with_distances
=
self
.
compute_distance_between_dem_and_target
(
dem
=
dem
.
values
,
target_points
=
target_points
)
# save pandas dataframe to csv
target_points_with_distances
.
to_csv
(
'
maciek/target_points_with_distances.csv
'
,
index
=
False
,
header
=
True
,
sep
=
'
,
'
)
filtered_points
=
self
.
filter_points
(
target_points_with_distances
=
target_points_with_distances
)
# save pandas dataframe to csv
filtered_points
.
to_csv
(
'
maciek/filtered_points.csv
'
,
index
=
False
,
header
=
True
,
sep
=
'
,
'
)
points_df
=
self
.
update_las_file
(
points_df
=
points_df
,
target_points_with_distances
=
filtered_points
)
# save pandas dataframe to csv
points_df
.
to_csv
(
'
maciek/updated_points.csv
'
,
index
=
False
,
header
=
True
,
sep
=
'
,
'
)
if
__name__
==
'
__main__
'
:
# parse the arguments
parser
=
argparse
.
ArgumentParser
(
description
=
'
Distance filtering based on DEM
'
)
parser
.
add_argument
(
'
-i
'
,
'
--input
'
,
help
=
'
Input file
'
,
required
=
True
)
parser
.
add_argument
(
'
-d
'
,
'
--distance
'
,
help
=
'
Distance
'
,
default
=
0.01
,
required
=
False
,
type
=
float
)
parser
.
add_argument
(
'
-v
'
,
'
--verbose
'
,
help
=
'
Verbose
'
,
required
=
False
)
args
=
vars
(
parser
.
parse_args
())
# get the arguments
LAS_FILE
=
args
[
'
input
'
]
DISTANCE
=
args
[
'
distance
'
]
VERBOSE
=
args
[
'
verbose
'
]
# run the script
DistanceFilteringDemBased
(
LAS_FILE
,
DISTANCE
,
VERBOSE
).
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment