-
Maciej Wielgosz authoredMaciej Wielgosz authored
run_oracle_wrapper.py 5.22 KiB
# This is the the file to be run on the oracle cloud
import oci
import argparse
import os
import io
import sys
import json
import shutil
import yaml
from urllib.parse import urlparse
from pathlib import Path
from oci.config import validate_config
from oci.object_storage import ObjectStorageClient
def run_oracle_wrapper(path_to_config_file):
# read the config file with the credentials with json format
with open('login_oracle_config.json') as f:
config = json.load(f)
# validate the config file
validate_config(config)
# create the client
client = ObjectStorageClient(config)
# read system environment variables
input_location = os.environ['OBJ_INPUT_LOCATION']
output_location = os.environ['OBJ_OUTPUT_LOCATION']
# doing for the input
if input_location is not None:
print('Taking the input from the location ' + input_location)
parsed_url = urlparse(input_location)
input_folder_in_bucket = parsed_url.path[1:]
input_bucket_name = parsed_url.netloc.split('@')[0]
input_namespace = parsed_url.netloc.split('@')[1]
else:
print('Taking the input from the default location')
# get the input_namespace
input_namespace = client.get_input_namespace().data
# get the bucket name
input_bucket_name = 'bucket_lidar_data'
# folder name inside the bucket
input_folder_in_bucket = 'geoslam'
# doing for the output
if output_location is not None:
print('Saving the output to the location ' + output_location)
parsed_url = urlparse(output_location)
output_folder_in_bucket = parsed_url.path[1:]
output_bucket_name = parsed_url.netloc.split('@')[0]
output_namespace = parsed_url.netloc.split('@')[1]
else:
print('Saving the output to the default location')
# get the output_namespace
output_namespace = client.get_input_namespace().data
# get the bucket name
output_bucket_name = 'bucket_lidar_data'
# folder name inside the bucket
output_folder_in_bucket = 'output'
# read the config file from config folder
with open(path_to_config_file) as f:
config_flow_params = yaml.load(f, Loader=yaml.FullLoader)
# copy all files from the bucket to the input folder
# get the list of objects in the bucket
objects = client.list_objects(input_namespace, input_bucket_name).data.objects
# create the input folder if it does not exist
if not os.path.exists(config_flow_params['general']['input_folder']):
os.mkdir(config_flow_params['general']['input_folder'])
# download the files from the bucket to the input folder
for item in objects:
if item.name.split('/')[0] == input_folder_in_bucket:
if not (item.name.split('/')[1] == ''):
object_name = item.name.split('/')[1]
print('Downloading the file ' + object_name + ' from the bucket ' + input_bucket_name)
path_to_object = os.path.join(input_folder_in_bucket, object_name)
# get the object
file = client.get_object(input_namespace, input_bucket_name, path_to_object)
# write the object to a file
with open(object_name, 'wb') as f:
for chunk in file.data.raw.stream(1024 * 1024, decode_content=False):
f.write(chunk)
# check if the file already exists in the input folder and delete it if it does
if os.path.exists(config_flow_params['general']['input_folder'] + '/' + object_name):
os.remove(config_flow_params['general']['input_folder'] + '/' + object_name)
# move the file to the input folder and overwrite if it already exists
shutil.move(object_name, config_flow_params['general']['input_folder'])
from run import main
# run the main function
main(path_to_config_file)
# instance segmentation is set to true
if config_flow_params['general']['run_instance_segmentation']:
path_to_the_output_folder = os.path.join(config_flow_params['general']['output_folder'], 'instance_segmented_point_clouds')
else:
path_to_the_output_folder = config_flow_params['general']['output_folder']
# get list of files in the output folder
list_of_files = os.listdir(path_to_the_output_folder)
# save files to the output bucket 'bucket_lidar_data' in the subfolder 'output'
for file in list_of_files:
# get the full path of the file
path_to_file = path_to_the_output_folder + '/' + file
# get the file name
file_name = file
# upload the file to the bucket
client.put_object(
output_namespace,
output_bucket_name,
os.path.join(output_folder_in_bucket, file_name),
io.open(path_to_file, 'rb')
)
if __name__ == '__main__':
# use argparse to get the path to the config file
parser = argparse.ArgumentParser()
parser.add_argument("--path_to_config_file", type=str, default="./config/config.yaml")
args = parser.parse_args()
# run the main function
print('Running the main function in run_oracle_wrapper.py')
run_oracle_wrapper(args.path_to_config_file)