-
Maciej Wielgosz authoredMaciej Wielgosz authored
pipeline_test.py 4.45 KiB
import subprocess
import wandb
# local imports
from metrics.instance_segmentation_metrics_in_folder import \
InstanceSegmentationMetricsInFolder
# wandb.login()
# wandb.init(project="instance_segmentation_classic", entity="smart_forest")
# define a class to run the command with arguments
class RunCommand:
def __init__(self, cmd, args):
self.cmd = cmd
self.args = args
def __call__(self):
print("Running command: " + self.cmd + " " + " ".join(self.args))
subprocess.run([self.cmd, *self.args])
# define the sweep configuration with the parameters to sweep
sweep_configuration = {
'method': 'random',
'name': 'sweep',
'metric': {'goal': 'maximize', 'name': 'f1_score'},
'parameters':
{
'N_TILES': {'values': [3]},
'SLICE_THICKNESS': {'max': 0.75, 'min': 0.25},
'FIND_STEMS_HEIGHT': {'max': 2.0, 'min': 0.5},
'FIND_STEMS_THICKNESS': {'max': 1.0, 'min': 0.1},
'GRAPH_MAXIMUM_CUMULATIVE_GAP': {'max': 20, 'min': 5},
'ADD_LEAVES_VOXEL_LENGTH': {'max': 0.5, 'min': 0.1},
'FIND_STEMS_MIN_POINTS': {'max': 500, 'min': 50},
'GRAPH_EDGE_LENGTH' : {'max': 2.0, 'min': 0.1},
'ADD_LEAVES_EDGE_LENGTH': {'max': 1.5, 'min': 0.2}
}
}
def main():
# initialize the sweep
run = wandb.init(project="sweep-train", entity="maciej-wielgosz-nibio")
# get files for the sweep
print("Getting files for the sweep")
cmd = "/home/nibio/mutable-outside-world/code/gitlab_fsct/instance_segmentation_classic/bash_helper_scripts/get_small_data_for_playground.sh"
subprocess.run([cmd], shell=True)
# define the arguments for all the parameters from the sweep configuration
print("Defining arguments for all the parameters from the sweep configuration")
n_tiles = wandb.config.N_TILES
slice_thickness = wandb.config.SLICE_THICKNESS
find_stems_height = wandb.config.FIND_STEMS_HEIGHT
find_stems_thickness = wandb.config.FIND_STEMS_THICKNESS
graph_maximum_cumulative_gap = wandb.config.GRAPH_MAXIMUM_CUMULATIVE_GAP
add_leaves_voxel_length = wandb.config.ADD_LEAVES_VOXEL_LENGTH
find_stems_min_points = wandb.config.FIND_STEMS_MIN_POINTS
graph_edge_length = wandb.config.GRAPH_EDGE_LENGTH
add_leaves_edge_length = wandb.config.ADD_LEAVES_EDGE_LENGTH
# print the arguments
print("N_TILES: " + str(n_tiles))
print("SLICE_THICKNESS: " + str(slice_thickness))
print("FIND_STEMS_HEIGHT: " + str(find_stems_height))
print("FIND_STEMS_THICKNESS: " + str(find_stems_thickness))
print("GRAPH_MAXIMUM_CUMULATIVE_GAP: " + str(graph_maximum_cumulative_gap))
print("ADD_LEAVES_VOXEL_LENGTH: " + str(add_leaves_voxel_length))
print("FIND_STEMS_MIN_POINTS: " + str(find_stems_min_points))
print("GRAPH_EDGE_LENGTH: " + str(graph_edge_length))
print("ADD_LEAVES_EDGE_LENGTH: " + str(add_leaves_edge_length))
# define the command
cmd = "./run_all_command_line.sh"
# define the arguments
args = [
"-d", "/home/nibio/mutable-outside-world/code/gitlab_fsct/instance_segmentation_classic/sample_playground"
]
print("Adding the arguments to the list of arguments")
args.extend([
"-n", str(n_tiles),
"-s", str(slice_thickness),
"-h", str(find_stems_height),
"-t", str(find_stems_thickness),
"-g", str(graph_maximum_cumulative_gap),
"-l", str(add_leaves_voxel_length),
"-m", str(find_stems_min_points),
"-o", str(graph_edge_length),
"-p", str(add_leaves_edge_length)
])
# run the command with the arguments
print("Running the command with the arguments")
RunCommand(cmd, args)()
# compute the metric
print("Computing the metric")
metric = InstanceSegmentationMetricsInFolder(
gt_las_folder_path = '/home/nibio/mutable-outside-world/code/gitlab_fsct/instance_segmentation_classic/sample_playground/results/input_data',
target_las_folder_path = '/home/nibio/mutable-outside-world/code/gitlab_fsct/instance_segmentation_classic/sample_playground/results/instance_segmented_point_clouds',
remove_ground=True,
verbose=True
)
f1_score = metric.main()
print("F1 score: " + str(f1_score))
# log the metric
print("Logging the metric")
wandb.log({"f1_score": f1_score})
# define the sweep
sweep_id = wandb.sweep(sweep=sweep_configuration, project="sweep-train", entity="maciej-wielgosz-nibio")
# run the sweep
wandb.agent(sweep_id, function=main, count=2)