diff --git a/.Rhistory b/.Rhistory
new file mode 100644
index 0000000000000000000000000000000000000000..324402eee85dda94e70b6294cff9a362ab436220
--- /dev/null
+++ b/.Rhistory
@@ -0,0 +1,512 @@
+names(colors_genera_pp) <- genera_pp
+colors_genera_other <- viridis(length(genera_other), option = "D", begin = 1 ,end = 0.9)
+names(colors_genera_other) <- genera_other
+colors_oomyc_genera <- c(colors_genera_pp, colors_genera_other)
+#Sort alphabetically by vector names to avoid mixing up color assignments (origin of issue not resolved)
+colors_oomyc_genera <- colors_oomyc_genera[order(names(colors_oomyc_genera))]
+colors_oomyc_genera["Phytophthora"] <- viridis_reds[1]
+colors_oomyc_genera["Pythium"] <- viridis_reds[4]
+shared_theme <- theme(legend.key.size = unit(3, "mm"), legend.position = "none", axis.title.x = element_blank(), plot.margin = margin(20,10,10,10), legend.text.align = 0)
+shared_theme_abu <- theme(legend.key.size = unit(3, "mm"), legend.position = "none", axis.title.x = element_blank(),  plot.margin = margin(20,10,10,10),legend.text.align = 0)
+if(customLabels){
+labelling <- c(expression(paste("uncultured ", italic("Apodachlya"))),
+expression(paste("uncultured ", italic("Lagenidium"))),
+expression(paste("uncultured ", italic("Oomycetes"))),
+expression(paste("uncultured ", italic("Phytophthora"))),
+expression(paste("uncultured ", italic("Pythium"))),
+expression(italic("Achlya"), italic("Albugo"), italic("Aphanomyces"),
+italic("Apodachlya"), italic("Atkinsiella"), italic("Bremia"),
+italic("Brevilegnia"), italic("Dictyuchus"), italic("Eurychasma"),
+italic("Geolegnia"), italic("Globisporangium"), italic("Halocrusticida"),
+italic("Haptoglossa"), italic("Hyaloperonospora"), italic("Lagena"),
+italic("Lagenidium"), italic("Leptolegnia"), italic("Myzocytiopsis"),
+italic("Paralagenidium"), italic("Peronospora"), italic("Phragmosporangium"),
+italic("Phytophthora"), italic("Phytopythium"), italic("Pilasporangium"),
+italic("Plectospira"), italic("Pustula"), italic("Pythiogeton"),
+italic("Pythiopsis"), italic("Pythium"), italic("Salilagenidium"),
+italic("Saprolegnia"), italic("Thraustotheca"), italic("Wilsoniana")), NA)
+}else{
+labelling <- unique(ASVs_funguild$Genus)
+}
+guild_g <- ggplot(ASVs_funguild, aes(x = guild_genus, fill = Genus)) + geom_bar() + shared_theme +
+scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) +
+ylab("Number of ASVs") + ylim(0,1500)
+guild_s <- ggplot(ASVs_funguild, aes(x = guild_species, fill = Genus)) + geom_bar() + shared_theme +
+scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) +
+ylab("Number of ASVs") + ylim(0,1500)
+guild_g_abu <- ggplot(ASVs_funguild, aes(x = guild_genus, y = Abundance_sum/1000000, fill = Genus)) +
+geom_col() + shared_theme_abu +
+scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) +
+ylab("Abundance in M reads") + ylim(0,2.5)
+guild_s_abu <- ggplot(ASVs_funguild, aes(x = guild_species, y = Abundance_sum/1000000, fill = Genus)) +
+geom_col() + shared_theme_abu +
+scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) +
+ylab("Abundance in M reads") + ylim(0,2.5)
+guilds <- ggarrange(guild_g, guild_g_abu, guild_s, guild_s_abu, nrow = 2, ncol = 2,
+common.legend = TRUE, legend = "right" ,align = "hv",
+labels = c("Genus level", "", "Species level", ""), font.label = list(size = 14))
+guilds
+save_plot(guilds ,plot_name = "FunGuild_combo")
+cat("Chunk successfully run")
+topnt2$labels
+topnt2$plot_env$fill
+topnt2$plot_env$mdf
+topnt2$plot_env$fill
+topnt2$plot_env$mdf$Genus %>% unique()
+topnt2$plot_env$mdf$Genus %>% unique() %>% sort()
+names(colors_lvl2)
+names(colors_lvl2) %>% sort()
+#CHANGE ME to the amount of top taxlvl to plot (e.g. 'numt = 20' plots Top20 Taxa at taxlvl)
+numt <- 5
+#CHANGE ME to the amount of top taxa you want to plot (e.g. 'numt2 = 25' plots Top25 Taxa at taxlvl2)
+numt2 <- 10
+#CHANGE ME to the primary parameter of interest (x-axis). Accepted values are the column headers in the descriptor file.
+primaryPar <- "Soil"
+##CHANGE ME to the secondary parameter of interest (panels). Accepted values are the column headers in the descriptor file.
+secondaryPar <- "Bait"
+##CHANGE ME to the taxonomic level of interest (color coding). Accepted values are available taxonomic levels. 'taxlvl' should be higher than 'taxlvl2', e.g. Class and Genus
+taxlvl <- "Class"
+taxlvl2 <- "Genus"
+#Adds formatted legend labels for the specific output in the manuscript. WARNING! Will overwrite actual values and needs to be turned off/adjusted manually when data is updated
+customLabels <- TRUE
+##CHANGE ME to change the width (in cm) of the output.
+wp <- 20
+#CHANGE ME to change the height (in cm) of the output.
+hp <- 15
+#CHANGE ME to change the resolution (in dpi) of the output.
+res <- 300
+#Get total number of reads and number of Pythium/Phytophthora reads (without contro samples!) to find out percentage of Pyhium and Phytophthora
+total_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::mutate(sumAbu = sum(Abundance)) %>%
+select(sumAbu) %>%
+unique() %>%
+unlist() %>%
+unname()
+pythium_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::group_by(Genus) %>%
+summarise(sumAbu = sum(Abundance)) %>%
+dplyr::filter(Genus == "Pythium") %>%
+select(sumAbu) %>%
+unlist() %>%
+unname()
+phytoph_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::group_by(Genus) %>%
+summarise(sumAbu = sum(Abundance)) %>%
+dplyr::filter(Genus == "Phytophthora") %>%
+select(sumAbu) %>%
+unlist() %>%
+unname()
+prctg_pyth_phyt_str <- paste0("\n\nTotal number of reads in the samples: ",
+total_reads_no_contr ,
+", number of Pythium reads: ",
+pythium_reads_no_contr,
+", number of Phytophthora reads: ",
+phytoph_reads_no_contr,
+"\nPercentage of Pythium total: ",
+pythium_reads_no_contr/total_reads_no_contr*100,
+"%\nPercentage of Phytophthora total: ",
+phytoph_reads_no_contr/total_reads_no_contr*100, "%")
+#Most abundant at specified levels, phyloseq objects
+ps.topnt <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl, top = numt,
+ignore_na = TRUE, silent = FALSE)
+ps.topnt2 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans,lvl = taxlvl2, top = numt2,
+ignore_na = TRUE, silent = FALSE)
+#Abundance lists (sorted by abundance)
+taxlist_topnt1 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl, top = numt,
+output_format = "tops", ignore_na = TRUE)
+taxlist_topnt2 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl2, top = numt2,
+output_format = "tops", ignore_na = TRUE)
+#tidy evaluation translation magic (needed so the dplyr functions that extract 'tax_lookup' below can parse the strings from the variable)
+lvl1 <- sym(taxlvl)
+lvl2 <- sym(taxlvl2)
+lvl1 <- enquo(lvl1)
+lvl2 <- enquo(lvl2)
+#make lookup table to guide coloring
+tax_lookup <- ps_tbl %>%
+group_by(!!lvl1, !!lvl2) %>%
+summarise() %>%
+filter(!!lvl2 %in% taxlist_topnt2)
+#Define fixed color schemes for classes for consistency between plots. This is a color scheme specified for this particular published figure. Can be used for orientation in general cases.
+#Background colors to be overwritten for special cases
+colors_lvl1 <- viridis(length(taxlist_topnt1), option = "D", begin = 1 , end = 0.5)
+names(colors_lvl1) <- taxlist_topnt1
+colors_lvl2 <- viridis(length(taxlist_topnt2), option = "D", begin = 1 , end = 0.5)
+names(colors_lvl2) <- taxlist_topnt2
+colors_combo <- c(colors_lvl1, colors_lvl2)
+#Special cases
+colors_combo["Chrysophyceae"] <- viridis_yellows[2]
+colors_combo["Pedospumella"] <- viridis_yellows[1]
+colors_combo["'Spumella-like'"] <- viridis_light[1]
+colors_combo["Oomycetes"] <- viridis_reds[4]
+colors_combo["Phytophthora"] <- viridis_reds[1]
+colors_combo["Pythium"] <- viridis_reds[4]
+colors_combo["Aphanomyces"] <- viridis_blues[1]
+colors_combo["Globisporangium"] <- "#4C0000FF"
+colors_combo["Pythiogeton"] <- viridis_blues[2]
+colors_combo["Saprolegnia"] <- viridis_blues[4]
+#Format legend labels
+if(customLabels){
+labelling_lvl2 <- c(expression(paste(italic("Spumella"), "-like")),
+"uncultured fungus", expression(italic("Aphanomyces"),
+italic("Globisporangium"), italic("Haptoglossa"), italic("Pedospumella"),
+italic("Phytophthora"), italic("Pythiogeton"), italic("Pythiopsis"),
+italic("Pythium")))
+}else{
+labelling_lvl2 <- names(colors_lvl2) %>% sort()
+}
+#Re-label the facets
+enrich_labs <- c("Before enrichment", "After enrichment")
+names(enrich_labs) <- c("Before enrichment", "Enriched")
+theme_bar <- theme(legend.position = "bottom",
+legend.key.size = unit(0.4, "cm"),
+legend.spacing.x = unit(0.3, 'cm'),
+text = element_text(size = 10),
+strip.text.x = element_text(size = 10),
+strip.background = element_blank(),
+axis.text.x = element_text(angle = 0, hjust = 0.5))
+topnt <- plot_bar(ps.topnt, x = primaryPar, fill = taxlvl,
+title = paste("Top", numt, "Classes")) +
+facet_wrap(paste0("~", secondaryPar),
+labeller = labeller(Bait = enrich_labs)) +
+scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
+scale_fill_manual(values = colors_combo) +
+ylab("Relative abundance") +
+theme_bar +
+xlab("Soil samples S01-S64")
+topnt_summary <- cuphyr::summarise_physeq(physeq = ps,
+ASV_sublist = taxa_names(ps.topnt),
+sublist_id =
+paste0("top ", numt, " ", taxlvl),
+samp_names = FALSE)
+topnt2 <- plot_bar(ps.topnt2, x = primaryPar, fill = taxlvl2,
+title = paste("Top", numt2, "Genera")) +
+facet_wrap(paste0("~", secondaryPar),
+labeller = labeller(Bait = enrich_labs)) +
+scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
+scale_fill_manual(values = colors_combo) +
+ylab("Relative abundance") +
+theme_bar + xlab("Soil samples S01-S64")
+topnt2_summary <- cuphyr::summarise_physeq(physeq = ps,
+ASV_sublist = taxa_names(ps.topnt2),
+sublist_id =
+paste0("top ", numt2, " ", taxlvl2),
+samp_names = FALSE)
+#Combine the plots
+combobar1 <- ggarrange(topnt, topnt2, nrow = 2, labels = c("A", "B"), align = "hv")
+#Save
+save_plot(combobar1, plot_name = "Topn_barplot_Fig2")
+#Print to standard out
+cat(topnt_summary, "\n\n", topnt2_summary)
+cat(prctg_pyth_phyt_str)
+combobar1
+cat("Chunk successfully run")
+#CHANGE ME to the amount of top taxlvl to plot (e.g. 'numt = 20' plots Top20 Taxa at taxlvl)
+numt <- 5
+#CHANGE ME to the amount of top taxa you want to plot (e.g. 'numt2 = 25' plots Top25 Taxa at taxlvl2)
+numt2 <- 10
+#CHANGE ME to the primary parameter of interest (x-axis). Accepted values are the column headers in the descriptor file.
+primaryPar <- "Soil"
+##CHANGE ME to the secondary parameter of interest (panels). Accepted values are the column headers in the descriptor file.
+secondaryPar <- "Bait"
+##CHANGE ME to the taxonomic level of interest (color coding). Accepted values are available taxonomic levels. 'taxlvl' should be higher than 'taxlvl2', e.g. Class and Genus
+taxlvl <- "Class"
+taxlvl2 <- "Genus"
+#Adds formatted legend labels for the specific output in the manuscript. WARNING! Will overwrite actual values and needs to be turned off/adjusted manually when data is updated
+customLabels <- TRUE
+##CHANGE ME to change the width (in cm) of the output.
+wp <- 20
+#CHANGE ME to change the height (in cm) of the output.
+hp <- 15
+#CHANGE ME to change the resolution (in dpi) of the output.
+res <- 300
+#Get total number of reads and number of Pythium/Phytophthora reads (without contro samples!) to find out percentage of Pyhium and Phytophthora
+total_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::mutate(sumAbu = sum(Abundance)) %>%
+select(sumAbu) %>%
+unique() %>%
+unlist() %>%
+unname()
+pythium_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::group_by(Genus) %>%
+summarise(sumAbu = sum(Abundance)) %>%
+dplyr::filter(Genus == "Pythium") %>%
+select(sumAbu) %>%
+unlist() %>%
+unname()
+phytoph_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::group_by(Genus) %>%
+summarise(sumAbu = sum(Abundance)) %>%
+dplyr::filter(Genus == "Phytophthora") %>%
+select(sumAbu) %>%
+unlist() %>%
+unname()
+prctg_pyth_phyt_str <- paste0("\n\nTotal number of reads in the samples: ",
+total_reads_no_contr ,
+", number of Pythium reads: ",
+pythium_reads_no_contr,
+", number of Phytophthora reads: ",
+phytoph_reads_no_contr,
+"\nPercentage of Pythium total: ",
+pythium_reads_no_contr/total_reads_no_contr*100,
+"%\nPercentage of Phytophthora total: ",
+phytoph_reads_no_contr/total_reads_no_contr*100, "%")
+#Most abundant at specified levels, phyloseq objects
+ps.topnt <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl, top = numt,
+ignore_na = TRUE, silent = FALSE)
+ps.topnt2 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans,lvl = taxlvl2, top = numt2,
+ignore_na = TRUE, silent = FALSE)
+#Abundance lists (sorted by abundance)
+taxlist_topnt1 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl, top = numt,
+output_format = "tops", ignore_na = TRUE)
+taxlist_topnt2 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl2, top = numt2,
+output_format = "tops", ignore_na = TRUE)
+#tidy evaluation translation magic (needed so the dplyr functions that extract 'tax_lookup' below can parse the strings from the variable)
+lvl1 <- sym(taxlvl)
+lvl2 <- sym(taxlvl2)
+lvl1 <- enquo(lvl1)
+lvl2 <- enquo(lvl2)
+#make lookup table to guide coloring
+tax_lookup <- ps_tbl %>%
+group_by(!!lvl1, !!lvl2) %>%
+summarise() %>%
+filter(!!lvl2 %in% taxlist_topnt2)
+#Define fixed color schemes for classes for consistency between plots. This is a color scheme specified for this particular published figure. Can be used for orientation in general cases.
+#Background colors to be overwritten for special cases
+colors_lvl1 <- viridis(length(taxlist_topnt1), option = "D", begin = 1 , end = 0.5)
+names(colors_lvl1) <- taxlist_topnt1
+colors_lvl2 <- viridis(length(taxlist_topnt2), option = "D", begin = 1 , end = 0.5)
+names(colors_lvl2) <- taxlist_topnt2
+colors_combo <- c(colors_lvl1, colors_lvl2)
+#Special cases
+colors_combo["Chrysophyceae"] <- viridis_yellows[2]
+colors_combo["Pedospumella"] <- viridis_yellows[1]
+colors_combo["'Spumella-like'"] <- viridis_light[1]
+colors_combo["Oomycetes"] <- viridis_reds[4]
+colors_combo["Phytophthora"] <- viridis_reds[1]
+colors_combo["Pythium"] <- viridis_reds[4]
+colors_combo["Aphanomyces"] <- viridis_blues[1]
+colors_combo["Globisporangium"] <- "#4C0000FF"
+colors_combo["Pythiogeton"] <- viridis_blues[2]
+colors_combo["Saprolegnia"] <- viridis_blues[4]
+#Format legend labels
+if(customLabels){
+labelling_lvl2 <- c(expression(paste(italic("Spumella"), "-like")),
+"uncultured fungus", expression(italic("Aphanomyces"),
+italic("Globisporangium"), italic("Haptoglossa"), italic("Pedospumella"),
+italic("Phytophthora"), italic("Pythiogeton"), italic("Pythiopsis"),
+italic("Pythium")))
+}else{
+labelling_lvl2 <- names(colors_lvl2) %>% sort()
+}
+#Re-label the facets
+enrich_labs <- c("Before enrichment", "After enrichment")
+names(enrich_labs) <- c("Before enrichment", "Enriched")
+theme_bar <- theme(legend.position = "bottom",
+legend.key.size = unit(0.4, "cm"),
+legend.spacing.x = unit(0.3, 'cm'),
+text = element_text(size = 10),
+strip.text.x = element_text(size = 10),
+strip.background = element_blank(),
+axis.text.x = element_text(angle = 0, hjust = 0.5))
+topnt <- plot_bar(ps.topnt, x = primaryPar, fill = taxlvl,
+title = paste("Top", numt, "Classes")) +
+facet_wrap(paste0("~", secondaryPar),
+labeller = labeller(Bait = enrich_labs)) +
+scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
+scale_fill_manual(values = colors_combo) +
+ylab("Relative abundance") +
+theme_bar +
+xlab("Soil samples S01-S64")
+topnt_summary <- cuphyr::summarise_physeq(physeq = ps,
+ASV_sublist = taxa_names(ps.topnt),
+sublist_id =
+paste0("top ", numt, " ", taxlvl),
+samp_names = FALSE)
+topnt2 <- plot_bar(ps.topnt2, x = primaryPar, fill = taxlvl2,
+title = paste("Top", numt2, "Genera")) +
+facet_wrap(paste0("~", secondaryPar),
+labeller = labeller(Bait = enrich_labs)) +
+scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
+scale_fill_manual(values = colors_combo, labels = labelling_lvl2) +
+ylab("Relative abundance") +
+theme_bar + xlab("Soil samples S01-S64")
+topnt2_summary <- cuphyr::summarise_physeq(physeq = ps,
+ASV_sublist = taxa_names(ps.topnt2),
+sublist_id =
+paste0("top ", numt2, " ", taxlvl2),
+samp_names = FALSE)
+#Combine the plots
+combobar1 <- ggarrange(topnt, topnt2, nrow = 2, labels = c("A", "B"), align = "hv")
+#Save
+save_plot(combobar1, plot_name = "Topn_barplot_Fig2")
+#Print to standard out
+cat(topnt_summary, "\n\n", topnt2_summary)
+cat(prctg_pyth_phyt_str)
+combobar1
+cat("Chunk successfully run")
+#CHANGE ME to the amount of top taxlvl to plot (e.g. 'numt = 20' plots Top20 Taxa at taxlvl)
+numt <- 5
+#CHANGE ME to the amount of top taxa you want to plot (e.g. 'numt2 = 25' plots Top25 Taxa at taxlvl2)
+numt2 <- 10
+#CHANGE ME to the primary parameter of interest (x-axis). Accepted values are the column headers in the descriptor file.
+primaryPar <- "Soil"
+##CHANGE ME to the secondary parameter of interest (panels). Accepted values are the column headers in the descriptor file.
+secondaryPar <- "Bait"
+##CHANGE ME to the taxonomic level of interest (color coding). Accepted values are available taxonomic levels. 'taxlvl' should be higher than 'taxlvl2', e.g. Class and Genus
+taxlvl <- "Class"
+taxlvl2 <- "Genus"
+#Adds formatted legend labels for the specific output in the manuscript. WARNING! Will overwrite actual values and needs to be turned off/adjusted manually when data is updated
+customLabels <- TRUE
+##CHANGE ME to change the width (in cm) of the output.
+wp <- 20
+#CHANGE ME to change the height (in cm) of the output.
+hp <- 15
+#CHANGE ME to change the resolution (in dpi) of the output.
+res <- 300
+#Get total number of reads and number of Pythium/Phytophthora reads (without contro samples!) to find out percentage of Pyhium and Phytophthora
+total_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::mutate(sumAbu = sum(Abundance)) %>%
+select(sumAbu) %>%
+unique() %>%
+unlist() %>%
+unname()
+pythium_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::group_by(Genus) %>%
+summarise(sumAbu = sum(Abundance)) %>%
+dplyr::filter(Genus == "Pythium") %>%
+select(sumAbu) %>%
+unlist() %>%
+unname()
+phytoph_reads_no_contr <- ps_tbl %>%
+dplyr::filter(Pass == "Yes") %>%
+dplyr::group_by(Genus) %>%
+summarise(sumAbu = sum(Abundance)) %>%
+dplyr::filter(Genus == "Phytophthora") %>%
+select(sumAbu) %>%
+unlist() %>%
+unname()
+prctg_pyth_phyt_str <- paste0("\n\nTotal number of reads in the samples: ",
+total_reads_no_contr ,
+", number of Pythium reads: ",
+pythium_reads_no_contr,
+", number of Phytophthora reads: ",
+phytoph_reads_no_contr,
+"\nPercentage of Pythium total: ",
+pythium_reads_no_contr/total_reads_no_contr*100,
+"%\nPercentage of Phytophthora total: ",
+phytoph_reads_no_contr/total_reads_no_contr*100, "%")
+#Most abundant at specified levels, phyloseq objects
+ps.topnt <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl, top = numt,
+ignore_na = TRUE, silent = FALSE)
+ps.topnt2 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans,lvl = taxlvl2, top = numt2,
+ignore_na = TRUE, silent = FALSE)
+#Abundance lists (sorted by abundance)
+taxlist_topnt1 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl, top = numt,
+output_format = "tops", ignore_na = TRUE)
+taxlist_topnt2 <- cuphyr::abundant_tax_physeq(
+physeq = ps.trans, lvl = taxlvl2, top = numt2,
+output_format = "tops", ignore_na = TRUE)
+#tidy evaluation translation magic (needed so the dplyr functions that extract 'tax_lookup' below can parse the strings from the variable)
+lvl1 <- sym(taxlvl)
+lvl2 <- sym(taxlvl2)
+lvl1 <- enquo(lvl1)
+lvl2 <- enquo(lvl2)
+#make lookup table to guide coloring
+tax_lookup <- ps_tbl %>%
+group_by(!!lvl1, !!lvl2) %>%
+summarise() %>%
+filter(!!lvl2 %in% taxlist_topnt2)
+#Define fixed color schemes for classes for consistency between plots. This is a color scheme specified for this particular published figure. Can be used for orientation in general cases.
+#Background colors to be overwritten for special cases
+colors_lvl1 <- viridis(length(taxlist_topnt1), option = "D", begin = 1 , end = 0.5)
+names(colors_lvl1) <- taxlist_topnt1
+colors_lvl2 <- viridis(length(taxlist_topnt2), option = "D", begin = 1 , end = 0.5)
+names(colors_lvl2) <- taxlist_topnt2
+colors_combo <- c(colors_lvl1, colors_lvl2)
+#Special cases
+colors_combo["Chrysophyceae"] <- viridis_yellows[2]
+colors_combo["Pedospumella"] <- viridis_yellows[1]
+colors_combo["'Spumella-like'"] <- viridis_light[1]
+colors_combo["Oomycetes"] <- viridis_reds[4]
+colors_combo["Phytophthora"] <- viridis_reds[1]
+colors_combo["Pythium"] <- viridis_reds[4]
+colors_combo["Aphanomyces"] <- viridis_blues[1]
+colors_combo["Globisporangium"] <- "#4C0000FF"
+colors_combo["Pythiogeton"] <- viridis_blues[2]
+colors_combo["Saprolegnia"] <- viridis_blues[4]
+#Format legend labels
+if(customLabels){
+labelling_lvl2 <- c(expression(paste(italic("Spumella"), "-like")),
+"uncultured fungus", expression(italic("Aphanomyces"),
+italic("Globisporangium"), italic("Haptoglossa"), italic("Pedospumella"),
+italic("Phytophthora"), italic("Pythiogeton"), italic("Pythiopsis"),
+italic("Pythium")))
+}else{
+labelling_lvl2 <- names(colors_lvl2) %>% sort()
+}
+#Re-label the facets
+enrich_labs <- c("Before enrichment", "After enrichment")
+names(enrich_labs) <- c("Before enrichment", "Enriched")
+theme_bar <- theme(legend.position = "bottom",
+legend.key.size = unit(0.4, "cm"),
+legend.spacing.x = unit(0.3, 'cm'),
+text = element_text(size = 10),
+strip.text.x = element_text(size = 10),
+strip.background = element_blank(),
+axis.text.x = element_text(angle = 0, hjust = 0.5),
+legend.text.align = 0)
+topnt <- plot_bar(ps.topnt, x = primaryPar, fill = taxlvl,
+title = paste("Top", numt, "Classes")) +
+facet_wrap(paste0("~", secondaryPar),
+labeller = labeller(Bait = enrich_labs)) +
+scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
+scale_fill_manual(values = colors_combo) +
+ylab("Relative abundance") +
+theme_bar +
+xlab("Soil samples S01-S64")
+topnt_summary <- cuphyr::summarise_physeq(physeq = ps,
+ASV_sublist = taxa_names(ps.topnt),
+sublist_id =
+paste0("top ", numt, " ", taxlvl),
+samp_names = FALSE)
+topnt2 <- plot_bar(ps.topnt2, x = primaryPar, fill = taxlvl2,
+title = paste("Top", numt2, "Genera")) +
+facet_wrap(paste0("~", secondaryPar),
+labeller = labeller(Bait = enrich_labs)) +
+scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
+scale_fill_manual(values = colors_combo, labels = labelling_lvl2) +
+ylab("Relative abundance") +
+theme_bar + xlab("Soil samples S01-S64")
+topnt2_summary <- cuphyr::summarise_physeq(physeq = ps,
+ASV_sublist = taxa_names(ps.topnt2),
+sublist_id =
+paste0("top ", numt2, " ", taxlvl2),
+samp_names = FALSE)
+#Combine the plots
+combobar1 <- ggarrange(topnt, topnt2, nrow = 2, labels = c("A", "B"), align = "hv")
+#Save
+save_plot(combobar1, plot_name = "Topn_barplot_Fig2")
+#Print to standard out
+cat(topnt_summary, "\n\n", topnt2_summary)
+cat(prctg_pyth_phyt_str)
+combobar1
+cat("Chunk successfully run")
diff --git a/Data_files/Pos_contrseqs.fasta b/Data_files/Pos_contrseqs.fasta
new file mode 100644
index 0000000000000000000000000000000000000000..42ee290efb91af4e67367a0a153dd1e1ce9558f4
--- /dev/null
+++ b/Data_files/Pos_contrseqs.fasta
@@ -0,0 +1,24 @@
+>2016-10.seq|Phytophthora_rosacearum_(+)
+ACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTATAATTTGGGGGCTTGTTTGGCGGCGTGCGTGCTGGCCTGTTAAGGGTCGGCGTGCTGCTGCTGGGCGGGCTCTATCATGGGCGATCGTTTTGGGCTTCGGCTCGAGCGAGTAGCTTTAATTTTAAACCCATTCTTAATTACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2016-18.seq|Phytophthora_alni_(+)
+ACCTAAAAAACTTTCCACGTGAACCGTATCAACCCACTTAGTTGGGGGCCTGTCCTGGCGGCTGGCTGTCGATGTCAAAGTTGACGGCTGCTGCTGTGTGTCGGGCCCTATCATGGCGAGCGTTTGGGTCCCTCTCGGGGGAACTGAGCCAGTAGCCCTTATCTTTTAAACCCATTCTTGAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2016-19.seq|Phytophthora_gregata_?_(+)
+ACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCGGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAGCTAGTAGCTTTAATTTCAAACCCATTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2016-35.seq|Pythium_undulatum_(+)
+ACCAAAAACTTTCCACGTGAACTGTCATTGCATGTTTTGTGCCTTTAATTAGGCTAAACGAAGGTCGGAGTAAAATCTGGCTGATCTATTTTTTAAACCCATTCTTAAACACTGATTTATACTGTGAGGACGAAAGTCTTTGCTTTTAACTAGATAACAACTTT
+>2016-36.seq|Phytophthora_chlamydospora_(+)
+ACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2017-185.seq|Phytophthora_sp._nov._(+)
+ACCTAAAAAACTTTCCACGTGAACCGTATCAACCCTTTTAGTTGGGGGTCTTGCTTTTTTGCGAGCCCTATCATGGCGAATGTTTGGACTTCGGTCTGGGCTAGTAGCTTTTTGTTTTAAACCCATTCAACAATACTGATTATACTGCGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2017-195.seq|Phytophthora_cactorum_(+)
+ACCTAAAAACTTTCCACGTGAACCGTTTCAAACCAAATAGTTGGGGGTCTTGTCTGGTGGCGGCTGCTGGCTTTATTGTTGGCGGCTGCTGCTGGGTGAGCCCTATCATGGCGAGCGTTTGGGCTTCGGCCTGAGCTAGTAGCTTTTCTTTTAAACCCATTCCTTAATACTGATTATACTGTGGGGACGAAAGTCCTTGCTTTTAACTAGATAGCAACTTT
+>2018-24.seq|Phytopythium_litorale_(+)
+ACCTAAAAATCTTTCCACGTGAATTGTTTTGCTGTACCTTTGGGCTTCGCCGTTGTCTTGTTCTTTTGTAAGAGAAAGGGGGAGGCGCGGTTGGAGGCCATCAGGGGTGTGTTCGTCGCGGTTTGTTTCTTTTGTTGGAACTTGCGCGCGGATGCGTCCTTTTGTCAACCCATTTTTTGAATGAAAAACTGATCATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2018-25.seq|Phytophthora_lacustris_(+)
+ACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTATAATTCGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCGGGCTCTATCATGGGCGAGCGCTTGGGCTTCGGCTCGAGCTAGTAGCTTTTTCTTTTAAACCCATTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2018-30.seq|Phytophthora_gonapodyides_(+)
+ACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTATAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCGGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAGCTAGTAGCTATCAATTTTAAACCCTTTCTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2018-31.seq|Phytopythium_citrinum_(+)
+ACCTAAAAATCTTTCCACGTGAATTGTTTTGCTGTAATTTTGGGCTTCGCCGTTGTCTTTTTTTCTTTTTTTCTTTTTTGTAAAAAAAGGGGGGAGCGCGGTTGGAGGCCATCAGGGGCGTGTTCGTCGTGCGTTTTATGATTCTATGATTCTATGATTCACGCGCGAGTGCGTCCTTTTGTCAACCCATTTCTTTTGAAAAACTGATCATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTT
+>2016-12|Phytophthora_gonapodyides_(+)
+GTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTTAATTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTAGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAGCTAGTAGCTATTTTTTTAAACCCATTCTTAATTACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACGCTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAACGCATATTGCACTTCCGGGTTAGTCCTGGGAGTATGCCTGTATCAGTGTCCGTACATCAACCTTGGTTTTCTTCCTTCCGTGTAGTCGGTGGAGGATATGCCAGACGTGAAGTGTCTTGCTGGCGGTCTTTCGAGTCTGCCGGTGAGTCCTTTGAAATGTACTGAACTGTACTCTCTCTTTGCTCGAAAAGCGTGGCGTTGCTGGTTGTGGAGGCTGCCTGTGTGGCTTGTCGGCGACCGGTTTGTTAGCTGTGACGTTTAATGGAGGAGTGTTCGATTCGCGGTATGGTTGGCTTCGGCTGAACAATCTGCTTATTGGGCGCTTTTTCCTGTCATTGGCGATACGAACCGGTGAACCGTAGTCATGTGGTGCTTGGCTTTTGAACTGGCTTTGCTGTTGCGAAGTAGTGTGGCGGCTTCGGCTGTCGAGGGGTCGATCCATTTTGGGAAACTTTGTGTGTGCGGCTTCGTGCTGCGCGCATCTCAATTGGACCTGATATCAGGCAAGATTACCCGCTGAACTTAA
\ No newline at end of file
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined.png b/Data_files/phyloseq_output/Barplot_controls_combined.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_11-08-20_111304.png b/Data_files/phyloseq_output/Barplot_controls_combined_11-08-20_111304.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_11-08-20_111304.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_12-08-20_143228.png b/Data_files/phyloseq_output/Barplot_controls_combined_12-08-20_143228.png
deleted file mode 100644
index 83b30581d26e9abb808ff3c1acde3aa61c11bf44..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_12-08-20_143228.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_100744.png b/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_100744.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_100744.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_133442.png b/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_133442.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_133442.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_154536.png b/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_154536.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_14-07-20_154536.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_093537.png b/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_093537.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_093537.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_125817.png b/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_125817.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_125817.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_130257.png b/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_130257.png
deleted file mode 100644
index 245453e947845928872d6e97904bb2b58ea8233d..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_130257.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_151122.png b/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_151122.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_18-09-20_151122.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_20-03-20_095011.png b/Data_files/phyloseq_output/Barplot_controls_combined_20-03-20_095011.png
deleted file mode 100644
index 0ca7d09ce2da1c58bb004f42c46ad630cc35140e..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_20-03-20_095011.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_20-07-20_130311.png b/Data_files/phyloseq_output/Barplot_controls_combined_20-07-20_130311.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_20-07-20_130311.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-07-20_083748.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-07-20_083748.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-07-20_083748.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-07-20_100140.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-07-20_100140.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-07-20_100140.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_101515.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_101515.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_101515.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_105734.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_105734.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_105734.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_124130.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_124130.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_124130.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_125922.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_125922.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_125922.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_135608.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_135608.png
deleted file mode 100644
index 245453e947845928872d6e97904bb2b58ea8233d..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_135608.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_140146.png b/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_140146.png
deleted file mode 100644
index 245453e947845928872d6e97904bb2b58ea8233d..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_21-09-20_140146.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_22-07-20_121818.png b/Data_files/phyloseq_output/Barplot_controls_combined_22-07-20_121818.png
deleted file mode 100644
index 245453e947845928872d6e97904bb2b58ea8233d..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_22-07-20_121818.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_22-07-20_122740.png b/Data_files/phyloseq_output/Barplot_controls_combined_22-07-20_122740.png
deleted file mode 100644
index 245453e947845928872d6e97904bb2b58ea8233d..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_22-07-20_122740.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_23-07-20_113751.png b/Data_files/phyloseq_output/Barplot_controls_combined_23-07-20_113751.png
deleted file mode 100644
index ec7ca94a1c56965782af1093d10055b7fd057c94..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Barplot_controls_combined_23-07-20_113751.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Barplot_controls_combined_12-08-20_144818.png b/Data_files/phyloseq_output/Barplot_controls_combined_supfig2.png
similarity index 100%
rename from Data_files/phyloseq_output/Barplot_controls_combined_12-08-20_144818.png
rename to Data_files/phyloseq_output/Barplot_controls_combined_supfig2.png
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2.png
deleted file mode 100644
index 066b5397947ac352c2f6d1a7e7608c0b2dc7875c..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_08-07-20_090532.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_08-07-20_090532.png
deleted file mode 100644
index 7512e96f8cecfd9c6d0be106456793a566a534a2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_08-07-20_090532.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_11-08-20_111949.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_11-08-20_111949.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_11-08-20_111949.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_12-08-20_143701.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_12-08-20_143701.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_12-08-20_143701.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_12-08-20_145509.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_12-08-20_145509.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_12-08-20_145509.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_14-07-20_101347.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_14-07-20_101347.png
deleted file mode 100644
index 7512e96f8cecfd9c6d0be106456793a566a534a2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_14-07-20_101347.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_14-07-20_155547.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_14-07-20_155547.png
deleted file mode 100644
index 7512e96f8cecfd9c6d0be106456793a566a534a2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_14-07-20_155547.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_18-09-20_130652.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_18-09-20_130652.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_18-09-20_130652.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_18-09-20_151701.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_18-09-20_151701.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_18-09-20_151701.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_20-03-20_095538.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_20-03-20_095538.png
deleted file mode 100644
index 066b5397947ac352c2f6d1a7e7608c0b2dc7875c..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_20-03-20_095538.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_20-07-20_131258.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_20-07-20_131258.png
deleted file mode 100644
index 7512e96f8cecfd9c6d0be106456793a566a534a2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_20-07-20_131258.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_084524.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_084524.png
deleted file mode 100644
index 7512e96f8cecfd9c6d0be106456793a566a534a2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_084524.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_090501.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_090501.png
deleted file mode 100644
index 066b5397947ac352c2f6d1a7e7608c0b2dc7875c..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_090501.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_104905.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_104905.png
deleted file mode 100644
index 066b5397947ac352c2f6d1a7e7608c0b2dc7875c..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_104905.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_105128.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_105128.png
deleted file mode 100644
index 408a60555d8f90344d7042ad4fbb601253ee7e6f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_105128.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_105140.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_105140.png
deleted file mode 100644
index 408a60555d8f90344d7042ad4fbb601253ee7e6f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-07-20_105140.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_101943.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_101943.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_101943.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_110117.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_110117.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_110117.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_140012.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_140012.png
deleted file mode 100644
index 9f949fc3e2699c4172799c0866722811745a6765..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_140012.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_140609.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_140609.png
deleted file mode 100644
index 9f949fc3e2699c4172799c0866722811745a6765..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_140609.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_22-07-20_122429.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_22-07-20_122429.png
deleted file mode 100644
index 408a60555d8f90344d7042ad4fbb601253ee7e6f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_22-07-20_122429.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_22-07-20_123433.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_22-07-20_123433.png
deleted file mode 100644
index 408a60555d8f90344d7042ad4fbb601253ee7e6f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_22-07-20_123433.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_23-07-20_114342.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_23-07-20_114342.png
deleted file mode 100644
index 408a60555d8f90344d7042ad4fbb601253ee7e6f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_23-07-20_114342.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_23-07-20_114535.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_23-07-20_114535.png
deleted file mode 100644
index 1c10021b9484f99e3680b660fcf31afcd10823ae..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_23-07-20_114535.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_130451.png b/Data_files/phyloseq_output/Class_absolute_ranking_Supfig3.png
similarity index 100%
rename from Data_files/phyloseq_output/Class_absolute_ranking_Supfig2_21-09-20_130451.png
rename to Data_files/phyloseq_output/Class_absolute_ranking_Supfig3.png
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3.png b/Data_files/phyloseq_output/Class_ranking_Fig3.png
index 254e08b1b29515f337c933dfe3761b8bab6ee984..05e0d8c8720141460c8270e953717f97df641041 100644
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3.png and b/Data_files/phyloseq_output/Class_ranking_Fig3.png differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_08-07-20_082930.png b/Data_files/phyloseq_output/Class_ranking_Fig3_08-07-20_082930.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_08-07-20_082930.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_08-07-20_094935.png b/Data_files/phyloseq_output/Class_ranking_Fig3_08-07-20_094935.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_08-07-20_094935.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_11-08-20_111850.png b/Data_files/phyloseq_output/Class_ranking_Fig3_11-08-20_111850.png
deleted file mode 100644
index ff78e6c64b8ea4562c3ac94b0bc1a159fcbb6843..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_11-08-20_111850.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_12-08-20_143625.png b/Data_files/phyloseq_output/Class_ranking_Fig3_12-08-20_143625.png
deleted file mode 100644
index 5eece6562bf2e01e897a429ba204b1bd1b3b17ef..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_12-08-20_143625.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_12-08-20_145439.png b/Data_files/phyloseq_output/Class_ranking_Fig3_12-08-20_145439.png
deleted file mode 100644
index 2919a7653b53fc13a4b52ea5460bd6121ed1a0c5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_12-08-20_145439.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_14-07-20_101255.png b/Data_files/phyloseq_output/Class_ranking_Fig3_14-07-20_101255.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_14-07-20_101255.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_14-07-20_155432.png b/Data_files/phyloseq_output/Class_ranking_Fig3_14-07-20_155432.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_14-07-20_155432.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_18-09-20_130637.png b/Data_files/phyloseq_output/Class_ranking_Fig3_18-09-20_130637.png
deleted file mode 100644
index 2919a7653b53fc13a4b52ea5460bd6121ed1a0c5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_18-09-20_130637.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_18-09-20_151613.png b/Data_files/phyloseq_output/Class_ranking_Fig3_18-09-20_151613.png
deleted file mode 100644
index ff78e6c64b8ea4562c3ac94b0bc1a159fcbb6843..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_18-09-20_151613.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_20-03-20_095517.png b/Data_files/phyloseq_output/Class_ranking_Fig3_20-03-20_095517.png
deleted file mode 100644
index 8154fa3f63fdc3c88d52e2765b37554248478a63..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_20-03-20_095517.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_20-07-20_131121.png b/Data_files/phyloseq_output/Class_ranking_Fig3_20-07-20_131121.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_20-07-20_131121.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_084434.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_084434.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_084434.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_100716.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_100716.png
deleted file mode 100644
index 254e08b1b29515f337c933dfe3761b8bab6ee984..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_100716.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_100928.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_100928.png
deleted file mode 100644
index ff78e6c64b8ea4562c3ac94b0bc1a159fcbb6843..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-07-20_100928.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_101911.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_101911.png
deleted file mode 100644
index ff78e6c64b8ea4562c3ac94b0bc1a159fcbb6843..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_101911.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_110053.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_110053.png
deleted file mode 100644
index eac203906757bc475a5bdca57891e1978eb4e31e..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_110053.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_125630.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_125630.png
deleted file mode 100644
index a01e1ec671886eecb7bb18aa7d9ac0c6ace9f988..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_125630.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_130414.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_130414.png
deleted file mode 100644
index a01e1ec671886eecb7bb18aa7d9ac0c6ace9f988..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_130414.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_135957.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_135957.png
deleted file mode 100644
index 05e0d8c8720141460c8270e953717f97df641041..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_135957.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_140551.png b/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_140551.png
deleted file mode 100644
index 05e0d8c8720141460c8270e953717f97df641041..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_21-09-20_140551.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_22-07-20_122355.png b/Data_files/phyloseq_output/Class_ranking_Fig3_22-07-20_122355.png
deleted file mode 100644
index 2919a7653b53fc13a4b52ea5460bd6121ed1a0c5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_22-07-20_122355.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_22-07-20_123408.png b/Data_files/phyloseq_output/Class_ranking_Fig3_22-07-20_123408.png
deleted file mode 100644
index 2919a7653b53fc13a4b52ea5460bd6121ed1a0c5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_22-07-20_123408.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Class_ranking_Fig3_23-07-20_114250.png b/Data_files/phyloseq_output/Class_ranking_Fig3_23-07-20_114250.png
deleted file mode 100644
index ff78e6c64b8ea4562c3ac94b0bc1a159fcbb6843..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Class_ranking_Fig3_23-07-20_114250.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo.png b/Data_files/phyloseq_output/FunGuild_combo.png
deleted file mode 100644
index e7b10d819dc67c08dfe27605368da7aebd2e4ae8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_11-08-20_111836.png b/Data_files/phyloseq_output/FunGuild_combo_11-08-20_111836.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_11-08-20_111836.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_12-08-20_143617.png b/Data_files/phyloseq_output/FunGuild_combo_12-08-20_143617.png
deleted file mode 100644
index c63211ddbd006150e82761015dd1f29b912331f5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_12-08-20_143617.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_12-08-20_145434.png b/Data_files/phyloseq_output/FunGuild_combo_12-08-20_145434.png
deleted file mode 100644
index 943a6a51a14977ba628ec8be39a2275f73a9e026..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_12-08-20_145434.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_101246.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_101246.png
deleted file mode 100644
index e7b10d819dc67c08dfe27605368da7aebd2e4ae8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_101246.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_133959.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_133959.png
deleted file mode 100644
index e7b10d819dc67c08dfe27605368da7aebd2e4ae8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_133959.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_134539.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_134539.png
deleted file mode 100644
index e7b10d819dc67c08dfe27605368da7aebd2e4ae8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_134539.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_134810.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_134810.png
deleted file mode 100644
index 3f465fcb56773a5a484194d2a8204e993a5699d4..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_134810.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_135637.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_135637.png
deleted file mode 100644
index 61cd6df3580b291684a52d8b58fc34701f37f6f4..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_135637.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_135717.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_135717.png
deleted file mode 100644
index 8b854f031864c340e396b0e942e3f506d6594a61..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_135717.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155421.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155421.png
deleted file mode 100644
index 8b854f031864c340e396b0e942e3f506d6594a61..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155421.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155643.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155643.png
deleted file mode 100644
index 301295b8109e4ca29b30f12a040a082aa36af799..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155643.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155718.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155718.png
deleted file mode 100644
index e7b10d819dc67c08dfe27605368da7aebd2e4ae8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155718.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155733.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155733.png
deleted file mode 100644
index 61cd6df3580b291684a52d8b58fc34701f37f6f4..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_155733.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160519.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160519.png
deleted file mode 100644
index 484a81ef5650da348bb14bd903c8a8139879578b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160519.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160745.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160745.png
deleted file mode 100644
index ddf3a8560fa84b3dca6ea8c51e4fbaf3822e0944..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160745.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160852.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160852.png
deleted file mode 100644
index f0877573d0611584f713c52118ee235a01aa66d9..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160852.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160934.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160934.png
deleted file mode 100644
index ce57af9df4e67d6210d218f4d943c5f426736b64..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_160934.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161043.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161043.png
deleted file mode 100644
index 36358ac11a22670bc99cbdb1216deca9d5bbe9be..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161043.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161051.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161051.png
deleted file mode 100644
index 66d9bc11838cb480997e87b684a7ccf8645fbfef..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161051.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161246.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161246.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161246.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161324.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161324.png
deleted file mode 100644
index 60e100b600ff25e16e8f90b890f0194439fda093..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161324.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161354.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161354.png
deleted file mode 100644
index cbf77f543a2f5af00b4002af4cb79180a9788057..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161354.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161430.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161430.png
deleted file mode 100644
index 60e100b600ff25e16e8f90b890f0194439fda093..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_161430.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164314.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164314.png
deleted file mode 100644
index 721b2cd76da3686ad4be86eb50a6a7600eceba74..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164314.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164443.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164443.png
deleted file mode 100644
index f81da3cc821b7fbc636d70fe152d3f2662b8fecb..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164443.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164654.png b/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164654.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_14-07-20_164654.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_18-09-20_130633.png b/Data_files/phyloseq_output/FunGuild_combo_18-09-20_130633.png
deleted file mode 100644
index 943a6a51a14977ba628ec8be39a2275f73a9e026..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_18-09-20_130633.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_18-09-20_151559.png b/Data_files/phyloseq_output/FunGuild_combo_18-09-20_151559.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_18-09-20_151559.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_20-03-20_095512.png b/Data_files/phyloseq_output/FunGuild_combo_20-03-20_095512.png
deleted file mode 100644
index 6c7a13f68921100b7b6b11b89d09768de9c6634a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_20-03-20_095512.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_20-07-20_131104.png b/Data_files/phyloseq_output/FunGuild_combo_20-07-20_131104.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_20-07-20_131104.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-07-20_084422.png b/Data_files/phyloseq_output/FunGuild_combo_21-07-20_084422.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-07-20_084422.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-07-20_100706.png b/Data_files/phyloseq_output/FunGuild_combo_21-07-20_100706.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-07-20_100706.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_101902.png b/Data_files/phyloseq_output/FunGuild_combo_21-09-20_101902.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_101902.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_110045.png b/Data_files/phyloseq_output/FunGuild_combo_21-09-20_110045.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_110045.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_130401.png b/Data_files/phyloseq_output/FunGuild_combo_21-09-20_130401.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_130401.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_135952.png b/Data_files/phyloseq_output/FunGuild_combo_21-09-20_135952.png
deleted file mode 100644
index 943a6a51a14977ba628ec8be39a2275f73a9e026..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_135952.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_140543.png b/Data_files/phyloseq_output/FunGuild_combo_21-09-20_140543.png
deleted file mode 100644
index 943a6a51a14977ba628ec8be39a2275f73a9e026..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_21-09-20_140543.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_22-07-20_122349.png b/Data_files/phyloseq_output/FunGuild_combo_22-07-20_122349.png
deleted file mode 100644
index 943a6a51a14977ba628ec8be39a2275f73a9e026..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_22-07-20_122349.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_22-07-20_123404.png b/Data_files/phyloseq_output/FunGuild_combo_22-07-20_123404.png
deleted file mode 100644
index 943a6a51a14977ba628ec8be39a2275f73a9e026..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_22-07-20_123404.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_23-07-20_114242.png b/Data_files/phyloseq_output/FunGuild_combo_23-07-20_114242.png
deleted file mode 100644
index 8d3b55438d6c7126236aee192e1f2b8b88f60ed2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/FunGuild_combo_23-07-20_114242.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/FunGuild_combo_Fig2.png b/Data_files/phyloseq_output/FunGuild_combo_Fig2.png
new file mode 100644
index 0000000000000000000000000000000000000000..f5bf81a68eea3339fb5094599fad825a11843e12
Binary files /dev/null and b/Data_files/phyloseq_output/FunGuild_combo_Fig2.png differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree.png
deleted file mode 100644
index 966db435f5969a7a22dcdb06f78b028ef5401779..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_14-07-20_101343.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_14-07-20_101343.png
deleted file mode 100644
index 966db435f5969a7a22dcdb06f78b028ef5401779..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_14-07-20_101343.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_14-07-20_155542.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_14-07-20_155542.png
deleted file mode 100644
index 966db435f5969a7a22dcdb06f78b028ef5401779..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_14-07-20_155542.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_20-03-20_095537.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_20-03-20_095537.png
deleted file mode 100644
index efd516331466d8efcbbb4199a8bd9b33f1e55ec3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_20-03-20_095537.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_20-07-20_131252.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_20-07-20_131252.png
deleted file mode 100644
index 966db435f5969a7a22dcdb06f78b028ef5401779..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs__tree_20-07-20_131252.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap.png
deleted file mode 100644
index fc4052ab5c182a163e4cb754505e3d56c6cfedab..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_11-08-20_111904.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_11-08-20_111904.png
deleted file mode 100644
index 4151081a0298bcd4a1e91ccddc836ef01aa17143..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_11-08-20_111904.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_12-08-20_143629.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_12-08-20_143629.png
deleted file mode 100644
index 31eba0fe2f6e2dd16ebeb823eb99a98fc195cd40..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_12-08-20_143629.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_12-08-20_145443.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_12-08-20_145443.png
deleted file mode 100644
index cb63e489aa2c48a7ee423f80219d8e68b5c138c6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_12-08-20_145443.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_14-07-20_101306.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_14-07-20_101306.png
deleted file mode 100644
index fc4052ab5c182a163e4cb754505e3d56c6cfedab..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_14-07-20_101306.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_14-07-20_155446.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_14-07-20_155446.png
deleted file mode 100644
index fc4052ab5c182a163e4cb754505e3d56c6cfedab..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_14-07-20_155446.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_18-09-20_130641.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_18-09-20_130641.png
deleted file mode 100644
index e9d1b14dd7fd9993a3819b3ffd185c06932d1992..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_18-09-20_130641.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_18-09-20_151629.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_18-09-20_151629.png
deleted file mode 100644
index 4bc3bb9b4b01d40eeb71e3245e68c126eabf84ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_18-09-20_151629.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-03-20_095521.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-03-20_095521.png
deleted file mode 100644
index 9105ea9108a9a5b4783e9eb8db1b68bfaa4f9b5a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-03-20_095521.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-07-20_131138.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-07-20_131138.png
deleted file mode 100644
index fc4052ab5c182a163e4cb754505e3d56c6cfedab..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-07-20_131138.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-07-20_141059.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-07-20_141059.png
deleted file mode 100644
index e41af17c34bb0c5658dfd2697e5ff82beaac10cc..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_20-07-20_141059.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_084445.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_084445.png
deleted file mode 100644
index e41af17c34bb0c5658dfd2697e5ff82beaac10cc..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_084445.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_095838.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_095838.png
deleted file mode 100644
index e41af17c34bb0c5658dfd2697e5ff82beaac10cc..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_095838.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100031.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100031.png
deleted file mode 100644
index e41af17c34bb0c5658dfd2697e5ff82beaac10cc..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100031.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100822.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100822.png
deleted file mode 100644
index b9c15d0b6e4e1bb92618186056014adde6cf58b1..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100822.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100832.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100832.png
deleted file mode 100644
index 6c0fafbc0e03964e9691933423ad5774b2e43e60..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_100832.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_102140.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_102140.png
deleted file mode 100644
index 4151081a0298bcd4a1e91ccddc836ef01aa17143..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-07-20_102140.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_101919.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_101919.png
deleted file mode 100644
index 4bc3bb9b4b01d40eeb71e3245e68c126eabf84ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_101919.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_103501.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_103501.png
deleted file mode 100644
index 4bc3bb9b4b01d40eeb71e3245e68c126eabf84ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_103501.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_105209.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_105209.png
deleted file mode 100644
index 4bc3bb9b4b01d40eeb71e3245e68c126eabf84ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_105209.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_110114.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_110114.png
deleted file mode 100644
index b67ee1abb3c52c7249ed6bea0505830e5ca9a858..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_110114.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_130445.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_130445.png
deleted file mode 100644
index de2eae0c12c4881070205bd32fc7aa322554fcd1..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_130445.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_140607.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_140607.png
deleted file mode 100644
index ea72605058565ca7dd3201bb05ad72b8f96b9676..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_140607.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_22-07-20_122402.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_22-07-20_122402.png
deleted file mode 100644
index cb63e489aa2c48a7ee423f80219d8e68b5c138c6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_22-07-20_122402.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_22-07-20_123412.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_22-07-20_123412.png
deleted file mode 100644
index cb63e489aa2c48a7ee423f80219d8e68b5c138c6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_22-07-20_123412.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_23-07-20_114302.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_23-07-20_114302.png
deleted file mode 100644
index 4151081a0298bcd4a1e91ccddc836ef01aa17143..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_23-07-20_114302.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_140010.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_Fig4.png
similarity index 100%
rename from Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_21-09-20_140010.png
rename to Data_files/phyloseq_output/IsolateSeqs_ASVs_heatmap_Fig4.png
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree.png
deleted file mode 100644
index faff0c5e51f9feaa3c945632c0223ec3f98b4a2d..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_11-08-20_111946.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_11-08-20_111946.png
deleted file mode 100644
index a1b28be7bfec9ec160f84d38627082297ebff038..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_11-08-20_111946.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_12-08-20_143658.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_12-08-20_143658.png
deleted file mode 100644
index a1b28be7bfec9ec160f84d38627082297ebff038..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_12-08-20_143658.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_12-08-20_145507.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_12-08-20_145507.png
deleted file mode 100644
index a1b28be7bfec9ec160f84d38627082297ebff038..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_12-08-20_145507.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_18-09-20_130651.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_18-09-20_130651.png
deleted file mode 100644
index accb94f3bdd0018000bde83f0a654e1a051bc81f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_18-09-20_130651.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_18-09-20_151656.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_18-09-20_151656.png
deleted file mode 100644
index accb94f3bdd0018000bde83f0a654e1a051bc81f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_18-09-20_151656.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_102717.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_102717.png
deleted file mode 100644
index 4db661676a01172c30dbd581db2e6ea68e6e4f6c..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_102717.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_103449.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_103449.png
deleted file mode 100644
index 91822710d5b778a30393dbe483b10949c97143ec..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_103449.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_104244.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_104244.png
deleted file mode 100644
index 4eb9da5fa53353996f63191e986845f33a3023f7..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_104244.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_110113.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_110113.png
deleted file mode 100644
index b802747f6e4cc7e6d751ca50dcfcf4f16778e891..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_110113.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_130443.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_130443.png
deleted file mode 100644
index b802747f6e4cc7e6d751ca50dcfcf4f16778e891..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_130443.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_140009.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_140009.png
deleted file mode 100644
index b802747f6e4cc7e6d751ca50dcfcf4f16778e891..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_140009.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_140606.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_140606.png
deleted file mode 100644
index b802747f6e4cc7e6d751ca50dcfcf4f16778e891..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_140606.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_22-07-20_122427.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_22-07-20_122427.png
deleted file mode 100644
index 9627ce0ae492960b879242e745b1739b0faffbf6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_22-07-20_122427.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_22-07-20_123432.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_22-07-20_123432.png
deleted file mode 100644
index 9627ce0ae492960b879242e745b1739b0faffbf6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_22-07-20_123432.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_23-07-20_114339.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_23-07-20_114339.png
deleted file mode 100644
index 9627ce0ae492960b879242e745b1739b0faffbf6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_23-07-20_114339.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_101939.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_Supfig4.png
similarity index 100%
rename from Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_21-09-20_101939.png
rename to Data_files/phyloseq_output/IsolateSeqs_ASVs_ref_tree_Supfig4.png
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree.png
deleted file mode 100644
index f12b7e661f237bfbe0358212ae6fddd647b2e2ea..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_084520.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_084520.png
deleted file mode 100644
index 211f898de927329363bed218d4c94922721f90d4..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_084520.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_093145.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_093145.png
deleted file mode 100644
index 4b6a4e95bb08214f043f0dd753a2bc7219c877d9..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_093145.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_094005.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_094005.png
deleted file mode 100644
index 708fa1e486d9946c16116817c6c266c8a271b2c2..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_094005.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_095134.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_095134.png
deleted file mode 100644
index 0280fb3bcd7d5c03bc689a640a8f163265b4b3d6..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_095134.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_095217.png b/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_095217.png
deleted file mode 100644
index c76f956afeb291fa2205ff0bae7392e204518e97..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/IsolateSeqs_ASVs_tree_21-07-20_095217.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1.png b/Data_files/phyloseq_output/Overview_Fig1.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_11-08-20_111356.png b/Data_files/phyloseq_output/Overview_Fig1_11-08-20_111356.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_11-08-20_111356.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_12-08-20_143328.png b/Data_files/phyloseq_output/Overview_Fig1_12-08-20_143328.png
deleted file mode 100644
index a348a04cd5f250c5b3eb272142fd7cc11f76b2a0..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_12-08-20_143328.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_14-07-20_100848.png b/Data_files/phyloseq_output/Overview_Fig1_14-07-20_100848.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_14-07-20_100848.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_14-07-20_133947.png b/Data_files/phyloseq_output/Overview_Fig1_14-07-20_133947.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_14-07-20_133947.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_14-07-20_154710.png b/Data_files/phyloseq_output/Overview_Fig1_14-07-20_154710.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_14-07-20_154710.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_18-09-20_125919.png b/Data_files/phyloseq_output/Overview_Fig1_18-09-20_125919.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_18-09-20_125919.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_18-09-20_130340.png b/Data_files/phyloseq_output/Overview_Fig1_18-09-20_130340.png
deleted file mode 100644
index 1370e0ee83c2af8487bc1008f25a9ed7a6071ff8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_18-09-20_130340.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_18-09-20_151236.png b/Data_files/phyloseq_output/Overview_Fig1_18-09-20_151236.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_18-09-20_151236.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_20-03-20_095054.png b/Data_files/phyloseq_output/Overview_Fig1_20-03-20_095054.png
deleted file mode 100644
index 1370e0ee83c2af8487bc1008f25a9ed7a6071ff8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_20-03-20_095054.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_20-07-20_130445.png b/Data_files/phyloseq_output/Overview_Fig1_20-07-20_130445.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_20-07-20_130445.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-07-20_083923.png b/Data_files/phyloseq_output/Overview_Fig1_21-07-20_083923.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-07-20_083923.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-07-20_100237.png b/Data_files/phyloseq_output/Overview_Fig1_21-07-20_100237.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-07-20_100237.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_101623.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_101623.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_101623.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_105829.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_105829.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_105829.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124249.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124249.png
deleted file mode 100644
index dd863b232a55ab967cdef107a669b2fc77bd2aa5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124249.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124330.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124330.png
deleted file mode 100644
index 71e26f06481d2a1fa18fdd03a8d9177875abe86b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124330.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124428.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124428.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_124428.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_130027.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_130027.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_130027.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_135653.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_135653.png
deleted file mode 100644
index 1370e0ee83c2af8487bc1008f25a9ed7a6071ff8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_135653.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_140236.png b/Data_files/phyloseq_output/Overview_Fig1_21-09-20_140236.png
deleted file mode 100644
index 1370e0ee83c2af8487bc1008f25a9ed7a6071ff8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_21-09-20_140236.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_22-07-20_121900.png b/Data_files/phyloseq_output/Overview_Fig1_22-07-20_121900.png
deleted file mode 100644
index 1370e0ee83c2af8487bc1008f25a9ed7a6071ff8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_22-07-20_121900.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_22-07-20_122842.png b/Data_files/phyloseq_output/Overview_Fig1_22-07-20_122842.png
deleted file mode 100644
index 1370e0ee83c2af8487bc1008f25a9ed7a6071ff8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_22-07-20_122842.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_23-07-20_113846.png b/Data_files/phyloseq_output/Overview_Fig1_23-07-20_113846.png
deleted file mode 100644
index 308441a7bdeee939c8b2f2277ab8441ba32ef59a..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Overview_Fig1_23-07-20_113846.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Overview_Fig1_12-08-20_144930.png b/Data_files/phyloseq_output/Overview_SupFig1.png
similarity index 100%
rename from Data_files/phyloseq_output/Overview_Fig1_12-08-20_144930.png
rename to Data_files/phyloseq_output/Overview_SupFig1.png
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree.png
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..387a91d5f1533cf73f9c04443647659786b63525 100644
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree.png and b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree.png differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_11-08-20_111355.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_11-08-20_111355.png
deleted file mode 100644
index 642f1f12ec103a3bd1f7eb4477d7cbc84c49ba1f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_11-08-20_111355.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_12-08-20_143327.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_12-08-20_143327.png
deleted file mode 100644
index 642f1f12ec103a3bd1f7eb4477d7cbc84c49ba1f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_12-08-20_143327.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_12-08-20_144928.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_12-08-20_144928.png
deleted file mode 100644
index 642f1f12ec103a3bd1f7eb4477d7cbc84c49ba1f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_12-08-20_144928.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_100847.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_100847.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_100847.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_133618.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_133618.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_133618.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_154707.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_154707.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_14-07-20_154707.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_093621.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_093621.png
deleted file mode 100644
index 642f1f12ec103a3bd1f7eb4477d7cbc84c49ba1f..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_093621.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_095023.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_095023.png
deleted file mode 100644
index 47c5a4b995165e5896e69ea1e97840483fe09f01..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_095023.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_095603.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_095603.png
deleted file mode 100644
index 84c61054647480a5577edaf8c7f195b655683dfc..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_095603.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_100130.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_100130.png
deleted file mode 100644
index 137605ff515b624e09295c06a6de457fa7826010..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_100130.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_100324.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_100324.png
deleted file mode 100644
index 600e03cedb9d11c34b1593f48930258ea2e82421..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_100324.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_125912.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_125912.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_125912.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_130339.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_130339.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_130339.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_151232.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_151232.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_18-09-20_151232.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_20-03-20_095050.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_20-03-20_095050.png
deleted file mode 100644
index e12d44b09e75c69a832685818349232072a17e25..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_20-03-20_095050.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_20-07-20_130442.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_20-07-20_130442.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_20-07-20_130442.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-07-20_083920.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-07-20_083920.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-07-20_083920.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-07-20_100235.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-07-20_100235.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-07-20_100235.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_101621.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_101621.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_101621.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_103719.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_103719.png
deleted file mode 100644
index c927035c8cbac5312aaa1f64d4551275ec3f02f5..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_103719.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_105828.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_105828.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_105828.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_124242.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_124242.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_124242.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_130025.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_130025.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_130025.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_135653.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_135653.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_135653.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_140235.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_140235.png
deleted file mode 100644
index e1a11380d9f26db04d8c95adaacad1556de0d89b..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_21-09-20_140235.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_22-07-20_121858.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_22-07-20_121858.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_22-07-20_121858.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_22-07-20_122841.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_22-07-20_122841.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_22-07-20_122841.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_23-07-20_113845.png b/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_23-07-20_113845.png
deleted file mode 100644
index 3a0f76c18aec3fd337e874c46b071a590141f1f3..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Pos-ASVs_kontr-seqs_tree_23-07-20_113845.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig1.png b/Data_files/phyloseq_output/Topn_barplot_Fig1.png
new file mode 100644
index 0000000000000000000000000000000000000000..906db5b196a9312d8053a0efc8ac52e9ec4af982
Binary files /dev/null and b/Data_files/phyloseq_output/Topn_barplot_Fig1.png differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2.png b/Data_files/phyloseq_output/Topn_barplot_Fig2.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_11-08-20_111431.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_11-08-20_111431.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_11-08-20_111431.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_12-08-20_143409.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_12-08-20_143409.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_12-08-20_143409.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_12-08-20_145002.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_12-08-20_145002.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_12-08-20_145002.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_14-07-20_100930.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_14-07-20_100930.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_14-07-20_100930.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_14-07-20_154825.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_14-07-20_154825.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_14-07-20_154825.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_125951.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_125951.png
deleted file mode 100644
index 12b0af1ee5d73698b7ec9a84c3188eb7f80148ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_125951.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_130405.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_130405.png
deleted file mode 100644
index 12b0af1ee5d73698b7ec9a84c3188eb7f80148ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_130405.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_151333.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_151333.png
deleted file mode 100644
index 12b0af1ee5d73698b7ec9a84c3188eb7f80148ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_18-09-20_151333.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_20-03-20_095151.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_20-03-20_095151.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_20-03-20_095151.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_20-07-20_130559.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_20-07-20_130559.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_20-07-20_130559.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-07-20_084026.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-07-20_084026.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-07-20_084026.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-07-20_100321.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-07-20_100321.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-07-20_100321.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_101700.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_101700.png
deleted file mode 100644
index 12b0af1ee5d73698b7ec9a84c3188eb7f80148ac..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_101700.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_105857.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_105857.png
deleted file mode 100644
index 3e52e3b714a84e4fd66aa3bb558c4abda153d2b8..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_105857.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_122334.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_122334.png
deleted file mode 100644
index b0e34537fcd37f8778ddb83ddf07c67a856d096e..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_122334.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_123414.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_123414.png
deleted file mode 100644
index 5f27b8666ad64e198eea53351b87f5a5e1943eff..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_123414.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_124527.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_124527.png
deleted file mode 100644
index 5f27b8666ad64e198eea53351b87f5a5e1943eff..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_124527.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_130115.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_130115.png
deleted file mode 100644
index 5f27b8666ad64e198eea53351b87f5a5e1943eff..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_130115.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_135725.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_135725.png
deleted file mode 100644
index 5f27b8666ad64e198eea53351b87f5a5e1943eff..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_135725.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_140310.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_140310.png
deleted file mode 100644
index 5f27b8666ad64e198eea53351b87f5a5e1943eff..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_21-09-20_140310.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_22-07-20_121925.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_22-07-20_121925.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_22-07-20_121925.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_22-07-20_122924.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_22-07-20_122924.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_22-07-20_122924.png and /dev/null differ
diff --git a/Data_files/phyloseq_output/Topn_barplot_Fig2_23-07-20_113926.png b/Data_files/phyloseq_output/Topn_barplot_Fig2_23-07-20_113926.png
deleted file mode 100644
index 79d6436d5daab5358907f1934289bc4f78a9e443..0000000000000000000000000000000000000000
Binary files a/Data_files/phyloseq_output/Topn_barplot_Fig2_23-07-20_113926.png and /dev/null differ
diff --git a/SupMat1_v6.Rmd b/SupMat3_submission_JoAE.Rmd
similarity index 93%
rename from SupMat1_v6.Rmd
rename to SupMat3_submission_JoAE.Rmd
index 35d81fe77bdc838ce4f7c4365a390975601a2ec6..1a571c5850ba4a77b0564ecaf52420364ea603db 100644
--- a/SupMat1_v6.Rmd
+++ b/SupMat3_submission_JoAE.Rmd
@@ -1,7 +1,7 @@
 ---
 title: "Supplementary material 3 - Metabarcoding data processing"
 author: "Simeon Rossmann"
-date: "21/09/2019"
+date: "12/10/2019"
 output:
   html_document:
     df_print: paged
@@ -510,7 +510,7 @@ cat("Chunk successfully run")
 
 #### Positive controls
 
-This chunk generates an overview over the positive controls (Supplementary Fig. 1)
+This chunk generates an overview over the positive controls (Supplementary Fig. 2)
 
 ```{r Positive controls}
 ##CHANGE ME to the secondary parameter of interest (categories on the x-axis). Accepted values are the column headers in your descriptor file. Uncomment to not use global value
@@ -536,7 +536,7 @@ tre <- plot_tree(ps.transcont, ladderize = "left", label.tips = taxlvltre, color
 
 combocontr <- ggarrange(tre, ggarrange(topnpplot, topntplot, ncol = 2, labels = c("B", "C"), align = "hv", common.legend = TRUE, legend = "right"), nrow = 2, legend = "right", labels = c("A")) 
 
-save_plot(combocontr, plot_name = "Barplot_controls_combined")
+save_plot(combocontr, plot_name = "Barplot_controls_combined_supfig2")
 
 combocontr
 
@@ -570,7 +570,7 @@ new.tree <- ape::root(fitGTRseqs$tree, outgroup = out.group, resolve.root = TRUE
 fitGTRseqs_outgroup <- new.tree
   
 #GTR_tree <- treeio::as.treedata(fitGTRseqs, type="ml")
-kontr_ASV_tree <- ggtree(fitGTRseqs_outgroup) + geom_tree() + geom_treescale(x = 1) + geom_tiplab() + xlim(0,2.5)
+kontr_ASV_tree <- ggtree(fitGTRseqs_outgroup) + geom_tree() + geom_treescale(x = 1) + geom_tiplab() + xlim(0,4)
 save_plot(kontr_ASV_tree, plot_name = "Pos-ASVs_kontr-seqs_tree")
 kontr_ASV_tree
 
@@ -579,7 +579,7 @@ cat("Chunk successfully run")
 
 #### Data overview
 
-This chunk generates an overview over read counts for all samples and additional info on the data (Fig. 1). ASV counts are summed up for all samples in the provided phyloseq object and assigned a rank based on this sum. The sample with the highest amount of total ASV counts will receive rank 1, the one with the second highest rank 2 and so on. A bar plot is generated, plotting the total ASV counts against the sample rank with color filling by run and a dashed line indicating the chosen cutoff defined in minASVcount (Parameter chunk).
+This chunk generates an overview over read counts for all samples and additional info on the data (Supplementary Fig. 1). ASV counts are summed up for all samples in the provided phyloseq object and assigned a rank based on this sum. The sample with the highest amount of total ASV counts will receive rank 1, the one with the second highest rank 2 and so on. A bar plot is generated, plotting the total ASV counts against the sample rank with color filling by run and a dashed line indicating the chosen cutoff defined in minASVcount (Parameter chunk).
 
 ```{r Averages}
 ##CHANGE ME to change the width (in cm) of the output.
@@ -605,7 +605,7 @@ overview <- ggplot(data = all, aes(x = Rank, y = Abundance, fill = Run)) +
 oomlist <- cuphyr::list_subset_ASVs(subv = c("Oomycetes"), taxlvlsub = "Class")
 
 #Save figure
-save_plot(overview, plot_name = "Overview_Fig1")
+save_plot(overview, plot_name = "Overview_SupFig1")
 
 overview
 cuphyr::summarise_physeq(physeq = ps, 
@@ -617,7 +617,7 @@ cat("Chunk successfully run")
 
 #### Top N ASVs/taxa Bar plot
 
-This chunk plots abundance of the Top n ASVs and taxa at a given level as a bar plot, giving an insight into the presence of the n ASV and most common taxa for the primary and secondary parameters. In the manuscript, the top 100 ASVs and top 5 classes are shown in Fig. 2.
+This chunk plots abundance of the Top n ASVs and taxa at a given level as a bar plot, giving an insight into the presence of the n ASV and most common taxa for the primary and secondary parameters. In the manuscript, the top 5 classes and top 10 genera are shown in Fig. 1.
 
 ```{r Bar plot, tidy=FALSE}
 #CHANGE ME to the amount of top taxlvl to plot (e.g. 'numt = 20' plots Top20 Taxa at taxlvl)
@@ -636,6 +636,9 @@ secondaryPar <- "Bait"
 taxlvl <- "Class"
 taxlvl2 <- "Genus"
 
+#Adds formatted legend labels for the specific output in the manuscript. WARNING! Will overwrite actual values and needs to be turned off/adjusted manually when data is updated
+customLabels <- TRUE
+
 ##CHANGE ME to change the width (in cm) of the output.
 wp <- 20
 #CHANGE ME to change the height (in cm) of the output.
@@ -730,6 +733,17 @@ colors_combo["Globisporangium"] <- "#4C0000FF"
 colors_combo["Pythiogeton"] <- viridis_blues[2]
 colors_combo["Saprolegnia"] <- viridis_blues[4]
 
+#Format legend labels
+if(customLabels){
+  labelling_lvl2 <- c(expression(paste(italic("Spumella"), "-like")), 
+  "uncultured fungus", expression(italic("Aphanomyces"), 
+  italic("Globisporangium"), italic("Haptoglossa"), italic("Pedospumella"),
+  italic("Phytophthora"), italic("Pythiogeton"), italic("Pythiopsis"), 
+  italic("Pythium")))
+}else{
+  labelling_lvl2 <- names(colors_lvl2) %>% sort()
+}
+
 #Re-label the facets
 enrich_labs <- c("Before enrichment", "After enrichment")
 names(enrich_labs) <- c("Before enrichment", "Enriched")
@@ -740,7 +754,8 @@ theme_bar <- theme(legend.position = "bottom",
                    text = element_text(size = 10), 
                    strip.text.x = element_text(size = 10),
                    strip.background = element_blank(),
-                   axis.text.x = element_text(angle = 0, hjust = 0.5))
+                   axis.text.x = element_text(angle = 0, hjust = 0.5),
+                   legend.text.align = 0)
 
 topnt <- plot_bar(ps.topnt, x = primaryPar, fill = taxlvl, 
                   title = paste("Top", numt, "Classes")) + 
@@ -763,7 +778,7 @@ topnt2 <- plot_bar(ps.topnt2, x = primaryPar, fill = taxlvl2,
   facet_wrap(paste0("~", secondaryPar), 
              labeller = labeller(Bait = enrich_labs)) + 
   scale_x_discrete(breaks = c("S05" ,"S15", "S25", "S35", "S45" ,"S55")) +
-  scale_fill_manual(values = colors_combo) + 
+  scale_fill_manual(values = colors_combo, labels = labelling_lvl2) + 
   ylab("Relative abundance") + 
   theme_bar + xlab("Soil samples S01-S64")
 topnt2_summary <- cuphyr::summarise_physeq(physeq = ps, 
@@ -775,7 +790,7 @@ topnt2_summary <- cuphyr::summarise_physeq(physeq = ps,
 combobar1 <- ggarrange(topnt, topnt2, nrow = 2, labels = c("A", "B"), align = "hv")
 
 #Save
-save_plot(combobar1, plot_name = "Topn_barplot_Fig2")
+save_plot(combobar1, plot_name = "Topn_barplot_Fig1")
 
 #Print to standard out
 cat(topnt_summary, "\n\n", topnt2_summary)
@@ -786,13 +801,16 @@ cat("Chunk successfully run")
 ```
 
 #### Functional classification using the FUNGuild database
-This chunk imports the FUNGuild database based on code by [S. Faye Smith (2018)](https://rpubs.com/faysmith/metabarcoding), then classifies and plots all oomycete genera in the data set.
+This chunk imports the FUNGuild database based on code by [S. Faye Smith (2018)](https://rpubs.com/faysmith/metabarcoding), then classifies and plots all oomycete genera in the data set (Fig. 2).
 ```{r funguild_classification}
 #Plot save dimensions
 wp <- 20
 hp <- 15
 res <- 300
 
+#Adds formatted legend labels for the specific output in the manuscript. WARNING! Will overwrite actual values and needs to be turned off/adjusted manually when data is updated
+customLabels <- TRUE
+
 #Custom color coding to emphasize pp genera, particularly Pythium and Phytophthora
 colors_genera_pp <- viridis(length(genera_pp), option = "D", begin = 0 , end = 0.8)
 names(colors_genera_pp) <- genera_pp
@@ -804,29 +822,58 @@ colors_oomyc_genera <- colors_oomyc_genera[order(names(colors_oomyc_genera))]
 colors_oomyc_genera["Phytophthora"] <- viridis_reds[1]
 colors_oomyc_genera["Pythium"] <- viridis_reds[4]
 
-shared_theme <- theme(legend.key.size = unit(3, "mm"), legend.position = "none", axis.title.x = element_blank(), plot.margin = margin(20,10,10,10))
-shared_theme_abu <- theme(legend.key.size = unit(3, "mm"), legend.position = "none", axis.title.x = element_blank(),  plot.margin = margin(20,10,10,10))
+#define ggplot theme (shared between genus and species level plots)
+shared_theme <- theme(legend.key.size = unit(3, "mm"), legend.position = "none", axis.title.x = element_blank(), plot.margin = margin(20,10,10,10), legend.text.align = 0)
+shared_theme_abu <- theme(legend.key.size = unit(3, "mm"), legend.position = "none", axis.title.x = element_blank(),  plot.margin = margin(20,10,10,10),legend.text.align = 0)
+
+#Format legend labels
+if(customLabels){
+  labelling <- c(expression(paste("uncultured ", italic("Apodachlya"))), 
+    expression(paste("uncultured ", italic("Lagenidium"))), 
+    expression(paste("uncultured ", italic("Oomycetes"))), 
+    expression(paste("uncultured ", italic("Phytophthora"))),
+    expression(paste("uncultured ", italic("Pythium"))), 
+    expression(italic("Achlya"), italic("Albugo"), italic("Aphanomyces"),
+    italic("Apodachlya"), italic("Atkinsiella"), italic("Bremia"), 
+    italic("Brevilegnia"), italic("Dictyuchus"), italic("Eurychasma"), 
+    italic("Geolegnia"), italic("Globisporangium"), italic("Halocrusticida"),
+    italic("Haptoglossa"), italic("Hyaloperonospora"), italic("Lagena"), 
+    italic("Lagenidium"), italic("Leptolegnia"), italic("Myzocytiopsis"), 
+    italic("Paralagenidium"), italic("Peronospora"), italic("Phragmosporangium"),
+    italic("Phytophthora"), italic("Phytopythium"), italic("Pilasporangium"), 
+    italic("Plectospira"), italic("Pustula"), italic("Pythiogeton"), 
+    italic("Pythiopsis"), italic("Pythium"), italic("Salilagenidium"),
+    italic("Saprolegnia"), italic("Thraustotheca"), italic("Wilsoniana")), NA)
+}else{
+  labelling <- unique(ASVs_funguild$Genus)
+}
 
 guild_g <- ggplot(ASVs_funguild, aes(x = guild_genus, fill = Genus)) + geom_bar() + shared_theme + 
-  scale_fill_manual(values = colors_oomyc_genera, na.value = "grey") + 
+  scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) + 
   ylab("Number of ASVs") + ylim(0,1500)
 guild_s <- ggplot(ASVs_funguild, aes(x = guild_species, fill = Genus)) + geom_bar() + shared_theme + 
-  scale_fill_manual(values = colors_oomyc_genera, na.value = "grey") + 
+  scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) + 
   ylab("Number of ASVs") + ylim(0,1500)
 
 guild_g_abu <- ggplot(ASVs_funguild, aes(x = guild_genus, y = Abundance_sum/1000000, fill = Genus)) + 
-  geom_col() + shared_theme_abu + scale_fill_manual(values = colors_oomyc_genera, na.value = "grey") + 
+  geom_col() + shared_theme_abu + 
+  scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) + 
   ylab("Abundance in M reads") + ylim(0,2.5)
+
 guild_s_abu <- ggplot(ASVs_funguild, aes(x = guild_species, y = Abundance_sum/1000000, fill = Genus)) + 
-  geom_col() + shared_theme_abu + scale_fill_manual(values = colors_oomyc_genera, na.value = "grey") + 
+  geom_col() + shared_theme_abu + 
+  scale_fill_manual(values = colors_oomyc_genera, na.value = "grey", labels = labelling) + 
   ylab("Abundance in M reads") + ylim(0,2.5)
 
 
+
 guilds <- ggarrange(guild_g, guild_g_abu, guild_s, guild_s_abu, nrow = 2, ncol = 2, 
                     common.legend = TRUE, legend = "right" ,align = "hv", 
                     labels = c("Genus level", "", "Species level", ""), font.label = list(size = 14))
 guilds
-save_plot(guilds ,plot_name = "FunGuild_combo")
+save_plot(guilds ,plot_name = "FunGuild_combo_Fig2")
+
+
 
 cat("Chunk successfully run")
 ```
@@ -910,7 +957,7 @@ combo
 cat("Chunk successfully run")
 ```
 
-#### Pairwise t-tests of classes in Fig. 4
+#### Pairwise t-tests of classes in Fig. 3
 
 This chunk documents the pairwise t-tests performed for the classes shown in Fig. 3. For each class/group of classes, the mean relative abundance before and after baiting are compared.
 
@@ -943,7 +990,7 @@ cat("Chunk successfully run")
 
 #### Phylogenetic tree of isolates, ASVs and reference isolates
 
-This chunk generates a phylogeny for the isolates ITS sequences and corresponding ASVs and one reference sequence per identified species. The selection/similarity of ASVs was determined by vsearch, the fasta files were assembled with bash commands.
+This chunk generates a phylogeny for the isolates ITS sequences and corresponding ASVs and one reference sequence per identified species. The selection/similarity of ASVs was determined by vsearch, the fasta files were assembled with bash commands (Supplementary Fig. 4).
 
 ```
 #Trimming isolate sequences to the metabarcoding regions from Sanger consensus multifasta
@@ -992,14 +1039,14 @@ fitGTRseqs <- optim.pml(fitGTRseqs, model = "GTR", optInv = TRUE, optGamma = TRU
 
 GTR_tree <- treeio::as.treedata(fitGTRseqs$tree, type = "ml")
 iso_ASV_tree <- ggtree(GTR_tree) + geom_tree() + geom_treescale(x = 0.5) + geom_tiplab() + xlim(-0.1,3)
-save_plot(iso_ASV_tree, plot_name = "IsolateSeqs_ASVs_ref_tree")
+save_plot(iso_ASV_tree, plot_name = "IsolateSeqs_ASVs_ref_tree_Supfig4")
 iso_ASV_tree
 cat("Chunk successfully run")
 ```
 
 #### Isolates and corresponding ASVs
 
-This chunk generates a tile plot of the presence and abundance of ASVs that correspond with isolates in the soil samples before and after enrichment.
+This chunk generates a tile plot of the presence and abundance of ASVs that correspond with isolates in the soil samples before and after enrichment (Fig. 4).
 
 ```{r isolates-v-ASVs}
 ##CHANGE ME to change the width (in cm) of the output.
@@ -1044,7 +1091,7 @@ iso_ASVs <- ggplot(exASV_counts, aes(x = OTU, y = reorder(Soil, dplyr::desc(Soil
               labs(fill = "Abund. (%)") +
               scale_x_discrete(limits = exASVs)
 
-save_plot(iso_ASVs, plot_name = "IsolateSeqs_ASVs_heatmap")
+save_plot(iso_ASVs, plot_name = "IsolateSeqs_ASVs_heatmap_Fig4")
 iso_ASVs
 
 cat("Chunk successfully run")
@@ -1053,7 +1100,7 @@ cat("Chunk successfully run")
 
 
 
-#### Supplementary Fig2
+#### Supplementary Fig3
 
 This figure is complementary to Fig 3 in the main manuscript but shows the absolute abundance for PP and Chrysophyceae instead of the relative abundances.
 ```{r ranked total ASV counts for groups of interest, tidy=FALSE, warning=FALSE}
@@ -1104,7 +1151,7 @@ combo.AB <- ggarrange(A.combo.anot, B.combo, ncol = 2) + theme(plot.margin = mar
 
 
 #Save plot
-save_plot(combo.AB, plot_name = "Class_absolute_ranking_Supfig2")
+save_plot(combo.AB, plot_name = "Class_absolute_ranking_Supfig3")
 combo.AB
 cat("Chunk successfully run")
 ```
diff --git a/SupMat1_v6.html b/SupMat3_submission_JoAE.html
similarity index 84%
rename from SupMat1_v6.html
rename to SupMat3_submission_JoAE.html
index cd5834180b635bc27b5c97b5403c212343c676f4..fa21f6fd30caef034bb88efb246ca1d3f66a4b31 100644
--- a/SupMat1_v6.html
+++ b/SupMat3_submission_JoAE.html
@@ -11,6 +11,7 @@
 
 <meta name="author" content="Simeon Rossmann" />
 
+<meta name="date" content="2019-12-10" />
 
 <title>Supplementary material 3 - Metabarcoding data processing</title>
 
@@ -1635,7 +1636,7 @@ summary {
 
 <h1 class="title toc-ignore">Supplementary material 3 - Metabarcoding data processing</h1>
 <h4 class="author">Simeon Rossmann</h4>
-<h4 class="date">21/09/2019</h4>
+<h4 class="date">12/10/2019</h4>
 
 </div>
 
@@ -1659,7 +1660,7 @@ summary {
 <h4>Descriptor table and initialization</h4>
 <p>The file ‘descriptors.txt’ is a tab-delimited .txt table containing metadata for all samples. It was generated using the chunk below (optional_sample_check = TRUE) and filled using the metadata from Supplementary table 1 but also contains data processing related columns that help adress certain data groups. This chunk points to the path of the input files and loads the necessary libraries. Warnings are disabled for this chunk as at least one function (dir.create) throws an expected warning every time the output path already exists. Set ‘warning=TRUE’ in the chunk header if you want to output warnings to the knitted document and output space under a given chunk (e.g. if you experience trouble loading certain libraries).</p>
 <pre class="r"><code># CHANGE ME according to the location containing &#39;seqtab_nochim.rds&#39; and other relevant files.
-path = &quot;qual2/&quot;
+path = &quot;Data_files/&quot;
 
 # CHANGE ME to &#39;TRUE&#39; to list all samples and generate an empty metadata file 
 optional_sample_check &lt;- &quot;FALSE&quot;
@@ -1797,7 +1798,7 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 </div>
 <div id="positive-controls" class="section level4">
 <h4>Positive controls</h4>
-<p>This chunk generates an overview over the positive controls (Supplementary Fig. 1)</p>
+<p>This chunk generates an overview over the positive controls (Supplementary Fig. 2)</p>
 <p><img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 </div>
@@ -1812,29 +1813,29 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 ## Clustering into groups by similarity:
 ## ================================================================================
 ## 
-## Time difference of 0.05 secs
+## Time difference of 0.03 secs
 ## 
 ## Aligning Sequences:
 ## ================================================================================
 ## 
-## Time difference of 0.67 secs
+## Time difference of 1.77 secs
 ## 
 ## Iteration 1 of 2:
 ## 
 ## Determining distance matrix based on alignment:
 ## ================================================================================
 ## 
-## Time difference of 0 secs
+## Time difference of 0.01 secs
 ## 
 ## Reclustering into groups by similarity:
 ## ================================================================================
 ## 
-## Time difference of 0.02 secs
+## Time difference of 0.03 secs
 ## 
 ## Realigning Sequences:
 ## ================================================================================
 ## 
-## Time difference of 0.27 secs
+## Time difference of 0.76 secs
 ## 
 ## Iteration 2 of 2:
 ## 
@@ -1846,23 +1847,23 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 ## Reclustering into groups by similarity:
 ## ================================================================================
 ## 
-## Time difference of 0.02 secs
+## Time difference of 0.03 secs
 ## 
 ## Realigning Sequences:
 ## ================================================================================
 ## 
-## Time difference of 0.02 secs
+## Time difference of 0.04 secs
 ## 
 ## Refining the alignment:
 ## ================================================================================
 ## 
-## Time difference of 0.12 secs</code></pre>
-<p><img src="" width="672" /></p>
+## Time difference of 0.27 secs</code></pre>
+<p><img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 </div>
 <div id="data-overview" class="section level4">
 <h4>Data overview</h4>
-<p>This chunk generates an overview over read counts for all samples and additional info on the data (Fig. 1). ASV counts are summed up for all samples in the provided phyloseq object and assigned a rank based on this sum. The sample with the highest amount of total ASV counts will receive rank 1, the one with the second highest rank 2 and so on. A bar plot is generated, plotting the total ASV counts against the sample rank with color filling by run and a dashed line indicating the chosen cutoff defined in minASVcount (Parameter chunk).</p>
+<p>This chunk generates an overview over read counts for all samples and additional info on the data (Supplementary Fig. 1). ASV counts are summed up for all samples in the provided phyloseq object and assigned a rank based on this sum. The sample with the highest amount of total ASV counts will receive rank 1, the one with the second highest rank 2 and so on. A bar plot is generated, plotting the total ASV counts against the sample rank with color filling by run and a dashed line indicating the chosen cutoff defined in minASVcount (Parameter chunk).</p>
 <p><img src="" width="672" /></p>
 <pre><code>## There are 5195 ASVs in the phyloseq object &#39;ps&#39;.
 ## Of this, 1832 belong to the provided subset (Oomycetes), representing 71.84 percent of abundance per sample on average.</code></pre>
@@ -1870,7 +1871,7 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 </div>
 <div id="top-n-asvstaxa-bar-plot" class="section level4">
 <h4>Top N ASVs/taxa Bar plot</h4>
-<p>This chunk plots abundance of the Top n ASVs and taxa at a given level as a bar plot, giving an insight into the presence of the n ASV and most common taxa for the primary and secondary parameters. In the manuscript, the top 100 ASVs and top 5 classes are shown in Fig. 2.</p>
+<p>This chunk plots abundance of the Top n ASVs and taxa at a given level as a bar plot, giving an insight into the presence of the n ASV and most common taxa for the primary and secondary parameters. In the manuscript, the top 5 classes and top 10 genera are shown in Fig. 1.</p>
 <pre><code>## 
 ## The top 5 most abundant annotated groups at the taxonomic level &#39;Class&#39; are:
 ## Oomycetes
@@ -1899,12 +1900,12 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 ## Total number of reads in the samples: 4113471, number of Pythium reads: 2003562, number of Phytophthora reads: 263367
 ## Percentage of Pythium total: 48.7073325665843%
 ## Percentage of Phytophthora total: 6.40254908810588%</code></pre>
-<p><img src="" width="672" /></p>
+<p><img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 </div>
 <div id="functional-classification-using-the-funguild-database" class="section level4">
 <h4>Functional classification using the FUNGuild database</h4>
-<p>This chunk imports the FUNGuild database based on code by <a href="https://rpubs.com/faysmith/metabarcoding">S. Faye Smith (2018)</a>, then classifies and plots all oomycete genera in the data set. <img src="" width="672" /></p>
+<p>This chunk imports the FUNGuild database based on code by <a href="https://rpubs.com/faysmith/metabarcoding">S. Faye Smith (2018)</a>, then classifies and plots all oomycete genera in the data set (Fig. 2). <img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 </div>
 <div id="rank-samples-by-asv-count-of-classes" class="section level4">
@@ -1912,8 +1913,8 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 <p>This chunk generates all panels of Fig. 3, in which the relative abundances of taxonomic classes of interest are summarized. Relative abundances are summed up for all samples in the provided phyloseq objects and assigned a rank based on this sum. The sample with the highest amount of total ASV counts will receive rank 1, the one with the second highest rank 2 and so on. A bar plot is generated, plotting relative abundance against the sample rank with the bars being colored according to the taxonomic. This is supposed to provide a quick overview of relative abundance for the taxonomic class subsets. <img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 </div>
-<div id="pairwise-t-tests-of-classes-in-fig.-4" class="section level4">
-<h4>Pairwise t-tests of classes in Fig. 4</h4>
+<div id="pairwise-t-tests-of-classes-in-fig.-3" class="section level4">
+<h4>Pairwise t-tests of classes in Fig. 3</h4>
 <p>This chunk documents the pairwise t-tests performed for the classes shown in Fig. 3. For each class/group of classes, the mean relative abundance before and after baiting are compared.</p>
 <div data-pagedtable="false">
 <script data-pagedtable-source type="application/json">
@@ -1927,7 +1928,7 @@ cat(&quot;Chunk successfully run&quot;)</code></pre>
 <h2>Comparison of Metabarcoding and baiting</h2>
 <div id="phylogenetic-tree-of-isolates-asvs-and-reference-isolates" class="section level4">
 <h4>Phylogenetic tree of isolates, ASVs and reference isolates</h4>
-<p>This chunk generates a phylogeny for the isolates ITS sequences and corresponding ASVs and one reference sequence per identified species. The selection/similarity of ASVs was determined by vsearch, the fasta files were assembled with bash commands.</p>
+<p>This chunk generates a phylogeny for the isolates ITS sequences and corresponding ASVs and one reference sequence per identified species. The selection/similarity of ASVs was determined by vsearch, the fasta files were assembled with bash commands (Supplementary Fig. 4).</p>
 <pre><code>#Trimming isolate sequences to the metabarcoding regions from Sanger consensus multifasta
 cutadapt -a CGGAAGGATCATTACCAC...CAGCAGTGGATGTCTAGGCT --minimum-length 50 -o trim_isos_v3.fasta Okay_Consensus_seqs_v3.fa
 
@@ -1964,12 +1965,12 @@ cat iso_and_ASVs_v3.fasta BLAST_ref_trim.fa &gt; iso_ASVs_refs_v3.fasta</code></
 ## Clustering into groups by similarity:
 ## ================================================================================
 ## 
-## Time difference of 0.01 secs
+## Time difference of 0.03 secs
 ## 
 ## Aligning Sequences:
 ## ================================================================================
 ## 
-## Time difference of 0.23 secs
+## Time difference of 0.54 secs
 ## 
 ## Iteration 1 of 100:
 ## 
@@ -1981,19 +1982,19 @@ cat iso_and_ASVs_v3.fasta BLAST_ref_trim.fa &gt; iso_ASVs_refs_v3.fasta</code></
 ## Reclustering into groups by similarity:
 ## ================================================================================
 ## 
-## Time difference of 0.01 secs
+## Time difference of 0.02 secs
 ## 
 ## Realigning Sequences:
 ## ================================================================================
 ## 
-## Time difference of 0.13 secs
+## Time difference of 0.4 secs
 ## 
 ## Iteration 2 of 100:
 ## 
 ## Determining distance matrix based on alignment:
 ## ================================================================================
 ## 
-## Time difference of 0 secs
+## Time difference of 0.01 secs
 ## 
 ## Reclustering into groups by similarity:
 ## ================================================================================
@@ -2003,14 +2004,14 @@ cat iso_and_ASVs_v3.fasta BLAST_ref_trim.fa &gt; iso_ASVs_refs_v3.fasta</code></
 ## Realigning Sequences:
 ## ================================================================================
 ## 
-## Time difference of 0.02 secs
+## Time difference of 0.04 secs
 ## 
 ## Alignment converged - skipping remaining iterations.
 ## 
 ## Refining the alignment:
 ## ================================================================================
 ## 
-## Time difference of 0.08 secs
+## Time difference of 0.18 secs
 ## 
 ## Alignment converged - skipping remaining refinements.</code></pre>
 <p><img src="" width="672" /></p>
@@ -2018,12 +2019,12 @@ cat iso_and_ASVs_v3.fasta BLAST_ref_trim.fa &gt; iso_ASVs_refs_v3.fasta</code></
 </div>
 <div id="isolates-and-corresponding-asvs" class="section level4">
 <h4>Isolates and corresponding ASVs</h4>
-<p>This chunk generates a tile plot of the presence and abundance of ASVs that correspond with isolates in the soil samples before and after enrichment.</p>
+<p>This chunk generates a tile plot of the presence and abundance of ASVs that correspond with isolates in the soil samples before and after enrichment (Fig. 4).</p>
 <p><img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 </div>
-<div id="supplementary-fig2" class="section level4">
-<h4>Supplementary Fig2</h4>
+<div id="supplementary-fig3" class="section level4">
+<h4>Supplementary Fig3</h4>
 <p>This figure is complementary to Fig 3 in the main manuscript but shows the absolute abundance for PP and Chrysophyceae instead of the relative abundances. <img src="" width="672" /></p>
 <pre><code>## Chunk successfully run</code></pre>
 <pre><code>## R version 4.0.2 (2020-06-22)
diff --git a/draft_dada2_pipeline_S-mod_v4-2.Rmd b/draft_dada2_pipeline_submission_JoAE.Rmd
similarity index 100%
rename from draft_dada2_pipeline_S-mod_v4-2.Rmd
rename to draft_dada2_pipeline_submission_JoAE.Rmd