Machine Learning Pipeline Documentation

Maciej Wielgosz
January 12, 2024

Contents

(1 _Introduction|

|2 Core dataset to be used for experiments|

[3 Data Preparation|
8.1 Cleaning File Names| o . 0 o
3.2 Preparing Train, Validation, and Test Sets|.

[4 Data Loading)
ED Visualization

[6 Model Training)

[r__Model Evaluation|

B Confusion Matrid

9 Precision, recall and F'1|

[0 Model — ualization]

1 Introduction

This document provides a detailed overview of the machine learning pipeline implemented in the Python
script pipeline/run.py. The pipeline is designed for a machine learning task and includes several key
steps: data preparation, model training, and model evaluation.

2 Core dataset to be used for experiments

The basic dataset used is shortly described below.

1. Leaves of Broad Leaf Trees

e Total Images: 134
e Types:
— Ash (25 images)
— Beech (30 images)
— Hornbeam (34 images)
— Mountain Oak (22 images)
— Sycamore Maple (23 images)

e Details:

— Image Scale: 800 pixels height or 600 pixels width

— Note: Ash leaves are compound, specifically pinnate

2. Bark of Trees
e Total Images: 1183

e Types:

— Ash (34 images)

— Beech (16 images)

— Black Pine (166 images, divided into 3 age-based sub-classes)
— Fir (127 images, divided into 3 age-based sub-classes)

— Hornbeam (42 images)

— Larch (200 images, divided into 3 age-based sub-classes)

— Mountain Oak (77 images)

— Scots Pine (190 images, divided into 3 age-based sub-classes)
— Spruce (213 images, divided into 3 age-based sub-classes)

— Swiss Stone Pine (96 images)

— Sycamore Maple (22 images)
e Details:

— Image Scale: 800 pixels height or 600 pixels width
— Age Categories:
* Less than 60 years

* 60 to 80 years
* More than 80 years

1
2

3

4

3. Needles of Conifers
e Total Images: 275

e Types:

Black Pine (107 images)
Fir (10 images)

— Larch (114 images)

— Scots Pine (10 images)

— Spruce (13 images)

— Swiss Stone Pine (21 images)
e Details:

— Needle Classes:
* Separate growth (Fir, Spruce)
* Cluster growth (others)
— Lighting:
* Perfect conditions (Fir, Scots Pine, Spruce)
* Natural conditions (others)

Figure 1: Black pine needles Figure 2: Larch needles Figure 3: Swiss stone pine

3 Data Preparation

Data preparation is the first and a critical phase of the machine learning pipeline. It involves organizing
and pre-processing the data to make it suitable for training the model.

3.1 Cleaning File Names

The script starts by cleaning the file and directory names in the dataset. This step ensures that the file
paths are standardized and free from irregularities which might cause errors during data loading.

from prepare_data.clean_file_names import clean_file_names

RAW_DATA_PATH = "/home/nibio/mutable-outside-world/code/ml-department-workshop/ml-
department ~workshop-dataset/simple-needles-2-class"
RAW_DATA_PATH = "/home/nibio/mutable-outside-world/code/ml-department -workshop/ml-

department ~workshop-dataset/simple-needles-3-class"

Clean file and directory names
clean_file_names (RAW_DATA_PATH)

w N

w N

w N

3.2 Preparing Train, Validation, and Test Sets

This section of the script splits the dataset into training, validation, and test sets. Such a split is essential
for training the model effectively and evaluating its performance accurately.

from prepare_data.prepare_train_val_test import PrepareTrainValTest

DATA_IN_PATH = RAW_DATA_PATH

DATA_OUT_PATH = "/home/nibio/mutable-outside-world/code/ml-department-workshop/datasets/
data_splited"

Create train, validation, and test data sets
prepare_data = PrepareTrainValTest (DATA_IN_PATH, DATA_OUT_PATH)

prepare_data.prepare_train_val_test ()

4 Data Loading

Data loading is a process where the prepared data is loaded into the pipeline in a structured format,
which can be easily accessed and manipulated during training and evaluation.

from pipeline.data_loader import create_data_loaders

DATA_PATH = DATA_OUT_PATH

BATCH_SIZE = 8
NUM_WORKERS = 4

Create data loaders
train_loader, val_loader, test_loader = create_data_loaders (DATA_PATH, BATCH_SIZE,
NUM_WORKERS)

5 Data Visualization

Visualizing data is a key aspect of understanding the dataset. This section shows sample images from
the dataset, which helps in getting a visual understanding of the data on which the model will be trained.

from visualization.show_sample_images import show_sample_images

Show sample images
show_sample_images (DATA_PATH, ’output_image.png’)

6 Model Training

Model training is the core part of the pipeline. This phase includes setting up the neural network, defining
the loss function and optimizer, and iterating over the training dataset to update model weights.

TRAIN = True

if TRAIN:
Import necessary packages for training
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

Import the model
from models.simple_cnn import SimpleCNN

Create an instance of the model
model = SimpleCNN ()

Define the loss function and optimizer
criterion = nn.CrossEntropyLoss ()

Use Adam optimizer
optimizer = optim.Adam(model.parameters(), 1lr=0.001)

Train the model
num_epochs = 5

for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader):
Get the inputs
inputs, labels = data

Zero the parameter gradients
optimizer.zero_grad ()

Forward + backward + optimize
outputs = model (inputs)

loss = criterion(outputs, labels)
loss.backward ()

optimizer.step ()

Print statistics
print (’ [%d, %5d] loss: %.3f’ % (epoch + 1, i + 1, loss))

save the model
torch.save (model.state_dict(), ’simple_cnn.pth’)

7 Model Evaluation

After training, the model is evaluated on a separate test dataset. This stage tests the model’s performance
and generalization on unseen data, which is crucial for understanding its real-world applicability.

load the model
import torch

from models.simple_cnn import SimpleCNN

model = SimpleCNN ()
model.load_state_dict(torch.load(’simple_cnn.pth’))

run the model on the test set and print the accuracy
correct = 0
total = 0

with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model (images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size (0)
correct += (predicted == labels).sum().item()

print (’Accuracy of the network on the test images: %d %%’ % (100 * correct / total))

8 Confusion Matrix

The confusion matrix is a tool to visualize the performance of the classification model. It shows the true
positive, true negative, false positive, and false negative predictions, providing insights into the type of
errors made by the model.

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from sklearn.metrics import confusion_matrix

Get the predictions for the test data
y_pred = []
y_true = []

with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model (images)
_, predicted = torch.max(outputs.data, dim=1)

y_pred += predicted.tolist ()
y_true += labels.tolist ()

Get the confusion matrix
cm = confusion_matrix(y_true, y_pred)

Plot the confusion matrix
plt.figure(figsize=(10, 10))

sns.heatmap(cm, annot=True, fmt=’d’, cmap=’Blues’)
plt.xlabel (’Predicted label’)

plt.ylabel (’True label’)

save the confusion matrix
plt.savefig(’confusion_matrix.png’)

9 Precision, recall and F1

Precision, recall, and the F'1 score are critical metrics derived from the confusion matrix, a fundamental
tool in evaluating the performance of classification models.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import precision_recall_fscore_support

Get the predictions for the test data
y_pred = []
y_true = []

with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model (images)
_, predicted = torch.max(outputs.data, dim=1)
y_pred += predicted.tolist ()
y_true += labels.tolist ()

7 # Get the precision, recall, and Fl-score

precision, recall, fl_score, = precision_recall_fscore_support(y_true, y_pred)

Plot the precision, recall, and Fl-score as a bar plot
plt.figure(figsize=(10, 10))

x = np.arange(len(precision))

width = 0.2

plt.bar(x, precision, width, label=’Precision’)
plt.bar(x + width, recall, width, label=’Recall’)
plt.bar(x + 2 * width, f1_score, width, label=’Fl-score’)
plt.xlabel(’Class’)

plt.ylabel (’Metric’)

plt.title(’Precision, Recall, and Fl-score’)
plt.xticks(x + width, range(len(precision)))
plt.legend ()

save the precision, recall, and Fl-score
plt.savefig(’precision_recall_f1_score.png’)

10 Model activation visualization

Activaltions after several filters in CNN are visualized in this section. To show better how the model
works.

HERBHBHF R B R R R R B R R R BB BB BB BB #H#H this section shows the activations after each layer of
the model ##H#H#H#HAAFHHHAAAHBAAAAR#ARAHRS

import matplotlib.pyplot as plt
import os

def save_activations (activations, save_dir):
for name, act in activations.items():
num_features = act.size (1)
for i in range (num_features):
plt.figure ()

plt.imshow(act [0, il.detach().numpy(), cmap=’hot’)
plt.axis (’off’)

Save each channel’s activation with a proper file name
filename = f"{save_dir}/{name}_channel_{i}.png"
plt.savefig(filename, bbox_inches=’tight’, pad_inches=0)
plt.close() # Close the plot to free up memory

Assuming ’images’ is a batch of images
And ’model’ is an instance of SimpleCNN
create a folder to save the activations
save_dir = ’activations’

os.makedirs (save_dir, exist_ok=True)

outputs, activations = model (images, return_activations=True)
save_activations (activations, save_dir)

Figure 4: Conv 1 channel 7 Figure 5: Conv 2 channel 15 Figure 6: Conv 3 channel 9

	Introduction
	Core dataset to be used for experiments
	Data Preparation
	Cleaning File Names
	Preparing Train, Validation, and Test Sets

	Data Loading
	Data Visualization
	Model Training
	Model Evaluation
	Confusion Matrix
	Precision, recall and F1
	Model activation visualization

