diff --git a/helpers/find_param_importance.py b/helpers/find_param_importance.py
index 33e166cee7ed8ef9c133d67ca410d0265a4149ef..a23ec79082e4f8f3bc6b09ea088ba05cd21adce4 100644
--- a/helpers/find_param_importance.py
+++ b/helpers/find_param_importance.py
@@ -162,8 +162,10 @@ class FindParamImportance:
         ss = StandardScaler()
         X_scaled = ss.fit_transform(X)
 
-        # remove from X_scaled the columns that have zeros or nan
-        X_scaled = X_scaled[:, ~np.all(X_scaled == 0, axis=0)]
+        # remove from X_scaled the columns that have nan values
+        X_scaled = X_scaled[:, ~np.isnan(X_scaled).any(axis=0)]
+        # replace nan values with 0
+        X_scaled = np.nan_to_num(X_scaled)
 
         # compute the correlation matrix and put values in the figur
         corr = np.corrcoef(X_scaled.T)
@@ -184,10 +186,11 @@ class FindParamImportance:
         upper = np.triu(corr)
         # find the indices of the upper triangle that are not zero
         # these are the indices of the correlated features
-        correlated_features = np.where(upper > 0.1)
+        correlated_features = np.where(upper > 0.15)
         # get the feature names
         feature_names = X.columns
         # print the correlated features
+        print('Correlated features:')
         for i in range(len(correlated_features[0])):
             if correlated_features[0][i] != correlated_features[1][i]:
                 print(feature_names[correlated_features[0][i]], feature_names[correlated_features[1][i]])
@@ -211,12 +214,13 @@ class FindParamImportance:
         X_highest_mean = X_highest.mean()
 
         # print the features with the highest mean values
+        print(' ')
+        print('Features with the highest mean values:')
+        print('Feature name', 'Mean value')
         for i in range(len(X_highest_mean)):
             print(X_highest_mean.index[i], X_highest_mean[i])
 
 
-
-
     def gen_plot_of_feature_importance(self, feature_importance):
         plt.figure(figsize=(10, 6))
         plt.barh(feature_importance['feature'], feature_importance['importance'])
@@ -236,8 +240,8 @@ class FindParamImportance:
             print('Done')
             print('Plot saved to: ', self.plot_file_path)
 
-        cluster_labels = self.cluster_results_kmeans()
-        cluster_labels_dbscan = self.cluster_dbscan()
+        # cluster_labels = self.cluster_results_kmeans()
+        # cluster_labels_dbscan = self.cluster_dbscan()
         self.find_correlation()
         self.find_highest_params_values()