From 37b2e845b1c32adec207dc35a7b4c86e732658ba Mon Sep 17 00:00:00 2001
From: Helmer Belbo <Helmer.Belbo@nibio.no>
Date: Thu, 26 Mar 2020 14:35:10 +0100
Subject: [PATCH] Major improvements: adding data, adding functions, expanding
 time span for regional edits.

---
 NAMESPACE                                     |   3 +-
 R/no_regioninndeling.R                        | 122 ++++
 R/ssb_skogsavvirkning.R                       | 103 ++-
 R/sysdata.rda                                 | Bin 0 -> 6869 bytes
 README.md                                     |   8 +-
 data-raw/DATASET.R                            | 152 +++++
 .../Regindeling_Fylker_1972_01_status.txt     |  21 +
 data-raw/Regindeling_Fylker_2006_7.txt        |   1 +
 data-raw/Regindeling_Fylker_2018_1.txt        |   5 +
 data-raw/Regindeling_Fylker_2020_1.txt        |  27 +
 data-raw/Regindeling_Kommuner_1994_status.txt | 437 +++++++++++++
 data-raw/Regindeling_Kommuner_2002_01.txt     |   7 +
 data-raw/Regindeling_Kommuner_2002_06.txt     |   3 +
 data-raw/Regindeling_Kommuner_2004_01.txt     |   3 +
 data-raw/Regindeling_Kommuner_2005_01.txt     |   5 +
 data-raw/Regindeling_Kommuner_2006_01.txt     |   9 +
 data-raw/Regindeling_Kommuner_2008_01.txt     |   5 +
 data-raw/Regindeling_Kommuner_2012_01.txt     |   5 +
 data-raw/Regindeling_Kommuner_2013_01.txt     |  11 +
 data-raw/Regindeling_Kommuner_2017_01.txt     |   7 +
 data-raw/Regindeling_Kommuner_2018_01.txt     | 109 +++
 data-raw/Regindeling_Kommuner_2019_01.txt     |   3 +
 data-raw/Regindeling_Kommuner_2020_01.txt     | 619 ++++++++++++++++++
 data/regref_fylke.rda                         | Bin 0 -> 637 bytes
 data/regref_kommune.rda                       | Bin 0 -> 7770 bytes
 ...03794_bruttoverdi_fylke2020_1996_2018.json |   1 -
 man/regnavn.at.ref.yr.Rd                      |  24 +
 man/ssb_skog_omsetning.Rd                     |  18 -
 man/t03794.Rd                                 |  23 +
 29 files changed, 1673 insertions(+), 58 deletions(-)
 create mode 100644 R/no_regioninndeling.R
 create mode 100644 R/sysdata.rda
 create mode 100644 data-raw/DATASET.R
 create mode 100644 data-raw/Regindeling_Fylker_1972_01_status.txt
 create mode 100644 data-raw/Regindeling_Fylker_2006_7.txt
 create mode 100644 data-raw/Regindeling_Fylker_2018_1.txt
 create mode 100644 data-raw/Regindeling_Fylker_2020_1.txt
 create mode 100644 data-raw/Regindeling_Kommuner_1994_status.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2002_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2002_06.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2004_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2005_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2006_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2008_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2012_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2013_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2017_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2018_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2019_01.txt
 create mode 100644 data-raw/Regindeling_Kommuner_2020_01.txt
 create mode 100644 data/regref_fylke.rda
 create mode 100644 data/regref_kommune.rda
 delete mode 100644 inst/extdata/SSB_t03794_bruttoverdi_fylke2020_1996_2018.json
 create mode 100644 man/regnavn.at.ref.yr.Rd
 delete mode 100644 man/ssb_skog_omsetning.Rd
 create mode 100644 man/t03794.Rd

diff --git a/NAMESPACE b/NAMESPACE
index 70db1f4..770d793 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -2,7 +2,8 @@
 
 export(ld.fylke.mnd)
 export(ld.kommune)
-export(ssb_skog_omsetning)
+export(regnavn.at.ref.yr)
+export(t03794)
 export(t03895)
 export(t06216)
 export(t12750)
diff --git a/R/no_regioninndeling.R b/R/no_regioninndeling.R
new file mode 100644
index 0000000..ca11cc7
--- /dev/null
+++ b/R/no_regioninndeling.R
@@ -0,0 +1,122 @@
+
+#' Region navn og region kode for gitt år
+#'
+#' Denne funksjonen tar regionkoder og regionnavn fra en regional statistikk,
+#' tar inn tabell som viser historiske endringer i regional inndeling av Norge
+#' og gjør om til riktige koder og navn for et gitt referanseår (ref.yr)
+#' Funksjonen fungerer for fylkesnivå inkludert landet ELLER for kommunenivå.
+#'
+#' @param regionstat
+#' @param ref.yr
+#' @param reg_level is the region level in the regionstat ("fylke"  | kommune")
+#'
+#' @return tibble having the regional statistics including the regional
+#' names and codes for the reference year in question
+#' @export
+#'
+#' @examples regnavn.at.ref.yr(regionstat = t12750(), ref.yr = 2020 ) %>% glimpse()
+regnavn.at.ref.yr<- function(regionstat, ref.yr = year(now()), reg_level = "fylke"){
+  #    regionstat = t12750() #for testing
+
+
+  # Fetch the relevant region reference table regref
+  if (reg_level == "fylke"){ regref <- regref_fylke
+  } else { regref <- regref_kommune}
+
+  # harmonizing
+  ref.yr = as.integer(ref.yr)
+
+glimpse(regref)
+ # Fetching from regref
+  regref = as.data.frame(regref, stringsAsFactors = F)
+  regref_n <- names(regref) #their column names
+  regref_yr <- as.integer(stringr::str_extract(names(regref), "\\d{4}")) #year
+  regref_typ <-  stringr::str_sub(regref_n, 5, 8) # type (code / name)
+  glimpse(tibble(regref_yr = regref_yr, regref_typ = regref_typ))
+
+glimpse(regionstat[seq.int(1, dim(regionstat)[1], length.out = 10), ])
+
+  regionstat <-
+    regionstat %>%
+    dplyr::mutate(.,
+                  # for each obs in regionstat: tag which column in regreft one should fetch the name and code
+                  #  when to fit with the ref.yr.
+                  regref_ref.yr_col_code =
+                    max( which(regref_yr <= ref.yr & regref_typ == "code") ),
+
+                  regref_ref.yr_col_name =
+                    max( which(regref_yr <= ref.yr &  regref_typ == "name") ))
+
+  glimpse(regionstat[seq.int(1, dim(regionstat)[1], length.out = 10), ])
+
+  print(paste0("regionstat$ar: ", str(regionstat$ar)))
+  print(paste0("regref_yr : ", str(regref_yr)))
+  regionstat <-
+    regionstat %>%
+    dplyr::mutate(.,
+                  # For each obsrv in the regionstat:
+                  #    which column in regref the "ar" belongs to;
+                  #       = ar_regref_col_rcode and ar_regref_col_rname
+                  yr_regref_col_rcode = purrr::pmap_int(., .f = function(ar,  ...){
+                    max( which( regref_yr <= ar & regref_typ == "code") )
+                  }),
+
+                  yr_regref_col_rname = purrr::pmap_int(., .f = function(ar, ...){
+                    max( which( regref_yr <= ar & regref_typ == "name") )
+                  }))
+  glimpse(regionstat[seq.int(1, dim(regionstat)[1], length.out = 10), ])
+  regionstat <-
+    regionstat %>%
+    dplyr::mutate(.,
+
+                  #     if each regionstat$region is present in the column in regref
+                  #       corresponding to the year of observation in regionstat
+                  #       = recode_regref_row
+                  regcode_in_regrefcol = purrr::pmap_lgl(., .f = function(region_kode, yr_regref_col_rcode, ...){
+                    case_when(
+                      region_kode %in% regref[, yr_regref_col_rcode] ~ T,
+                      TRUE ~ F)
+                  }),
+                  #     and which row in regref the region_code belongs to:
+                  #       = recode_regref_row
+                  regcode_regref_row = purrr::pmap_int(., .f = function(region_kode, yr_regref_col_rcode, ...){
+                    case_when(
+                      region_kode %in% regref[, yr_regref_col_rcode] ~
+                                 which( regref[, yr_regref_col_rcode] == region_kode)[1] ,
+                      TRUE ~ NA_integer_)
+                  })
+                  ) %>%
+    #
+
+    dplyr::mutate(.,
+                  valid_reg =
+                    dplyr::case_when(
+                      regcode_in_regrefcol | region_kode == "0" ~ T,
+                      TRUE ~ F))
+
+  glimpse(regionstat)
+
+  regionstat <- regionstat %>%
+
+    dplyr::filter(., valid_reg == TRUE) %>%
+
+#   Then we have indexes needed to pick the right row and column
+#      to populate both reg_k@ref.yr and reg_n@ref.yr
+    dplyr::mutate(.,
+      !!sym(paste0("reg_n", ref.yr)) := coalesce(regref[cbind(regcode_regref_row, regref_ref.yr_col_name)], region),
+      !!sym(paste0("reg_k", ref.yr)) := coalesce(regref[cbind(regcode_regref_row, regref_ref.yr_col_code)], region_kode)
+      )
+
+
+  return(regionstat)
+
+}
+
+
+
+
+
+
+
+
+
diff --git a/R/ssb_skogsavvirkning.R b/R/ssb_skogsavvirkning.R
index 3793bdf..65be40d 100644
--- a/R/ssb_skogsavvirkning.R
+++ b/R/ssb_skogsavvirkning.R
@@ -1,3 +1,61 @@
+##### t03794
+#' Skogsavvirkning bruttoverdi t03794
+#' bruttoverdi per år av tømmer, SSB tabell 03794
+#'
+#' Tabellen gir totalverdi av tømmer solgt per år og geografisk enhet, fra 1996 til 2018.
+#' Litt usikker om energivirkesortimenter og ved er med.
+#' https://www.ssb.no/statbank/list/skogav
+#'
+#' @param geolevel
+#'
+#' @return en tibble med hele datasetet.
+#' @export
+#'
+#' @examples
+#'  t03794()
+t03794 <- function(geolevel = 'fylke'){
+
+  if (!(geolevel %in% c("fylke", "kommune", "landet"))) {stop("warning: to get result, ret should be one of 'fylker', 'kommuner', 'landet'" )}
+  metadt <- PxWebApiData::ApiData("http://data.ssb.no/api/v0/no/table/03794", returnMetaData = TRUE)
+  regs <- unlist(purrr::flatten(metadt[[1]][3]))
+
+  kommuner <- regs[stringr::str_length(regs) == 4]
+  fylker <- regs[stringr::str_length(regs) == 2]
+  landet <- regs[stringr::str_length(regs) == 1]
+
+  geolevels <- list(kommune = kommuner, fylke = fylker, landet = landet)
+  geoselector <- which(names(geolevels) == geolevel)
+
+  pxdt <- PxWebApiData::ApiData("http://data.ssb.no/api/v0/no/table/03794",
+                                #Region = T, #c(landet, geolevels[[geoselector]]),
+                                Region = c(landet, geolevels[[geoselector]]),
+                                Tid = T, #c("2010", "2016", "2017"),
+                                ContentsCode = T # 10i)
+  )
+
+  regioner_utvalg <-
+    dplyr::as.tbl(pxdt[[1]])  %>%
+    dplyr::rename(., bruttoverdi = value) %>%
+    dplyr::group_by(region) %>%
+    dplyr::summarize(., volumtot = sum(bruttoverdi, na.rm = T)) %>%
+    dplyr::filter(., volumtot > 0) %>%
+    dplyr::pull(., region)
+
+  ds <- dplyr::as.tbl(pxdt[[2]]) %>%
+    dplyr::rename(., region_kode = Region, ar = Tid)
+
+  bruttov <- dplyr::as.tbl(pxdt[[1]])  %>%
+
+    dplyr::rename(.,  ar = år, bruttoverdi = value) %>%
+    dplyr::bind_cols(., (ds %>% dplyr::select(., region_kode))) %>%
+    dplyr::filter(., region %in% regioner_utvalg) %>%
+    dplyr::mutate(., ar = as.integer(ar)
+    )
+  return(bruttov)
+
+}
+
+##### t12750
 #' Skogsavvirkning priser t12750
 #' prisstatistikk for tømmer fra SSB tabell 12750
 #'
@@ -54,7 +112,7 @@ t12750 <- function(){
 
 
 
-
+##### t06216
 #' Skogsavvirkning priser t06216
 #' prisstatistikk for tømmer SSB tabell 06216
 #'
@@ -112,6 +170,7 @@ t06216 <- function(){ # NB: avslutta, tidsserie 1996 - 2017
   return(priser)
 }
 
+####### t03794
 #' Skogsavvirkning volum t03895
 #' Hogststatistikk for tømmer SSB tabell 03895
 #' 1996 - 2018
@@ -126,15 +185,15 @@ t06216 <- function(){ # NB: avslutta, tidsserie 1996 - 2017
 #'
 #' @examples
 #' t03895()
-t03895 <- function( geolevel = 'fylke'){ # 1996 - 2018
+t03895 <- function(geolevel = 'fylke'){ # 1996 - 2018
 
-  if ( !(geolevel %in% c("fylke", "kommune", "landet"))){ stop("warning: to get result, ret should be one of 'fylker', 'kommuner', 'landet'" )}
+  if ( !(geolevel %in% c("fylke", "kommune", "landet"))) { stop("warning: to get result, ret should be one of 'fylker', 'kommuner', 'landet'" )}
   metadt <- PxWebApiData::ApiData("http://data.ssb.no/api/v0/no/table/03895", returnMetaData = TRUE)
   regs <- unlist(purrr::flatten(metadt[[1]][3]))
 
-  kommuner <- regs[stringr::str_length(regs)==4]
-  fylker <- regs[stringr::str_length(regs)==2]
-  landet <- regs[stringr::str_length(regs)==1]
+  kommuner <- regs[stringr::str_length(regs) == 4]
+  fylker <- regs[stringr::str_length(regs) == 2]
+  landet <- regs[stringr::str_length(regs) == 1]
 
   geolevels <- list(kommune = kommuner, fylke = fylker, landet = landet)
   geoselector <- which(names(geolevels) == geolevel)
@@ -158,7 +217,8 @@ t03895 <- function( geolevel = 'fylke'){ # 1996 - 2018
     dplyr::rename(., region_kode = Region, ar = Tid, virkeskategori = Treslag)
 
   volum <- dplyr::as.tbl(pxdt[[1]])  %>%
-    dplyr::rename(., ar = år, kategoritekst = sortiment, volum_m3pris = value) %>%
+
+    dplyr::rename(.,  ar = år, kategoritekst = sortiment, volum_m3pris = value) %>%
     dplyr::bind_cols(., (ds %>% dplyr::select(., region_kode, virkeskategori))) %>%
     dplyr::filter(., region %in% regioner_utvalg) %>%
     dplyr::mutate(.,
@@ -175,38 +235,11 @@ t03895 <- function( geolevel = 'fylke'){ # 1996 - 2018
                     stringr::str_sub(virkeskategori, 1,2) %in% c("14", "24", "34") ~ "massevirke",
                     TRUE ~ "annet"
                   ),
-                  ar = as.numeric(ar)
+                  ar = as.integer(ar)
                   )
   return(volum)
 
 }
 
 
-#' SSB skogsavvirkning for salg: omsetning
-#'
-#' Denne henter tabellene for prishistorikk t12750 og hogstvolum t03895 og setter dem sammen.
-#' https://www.ssb.no/statbank/list/skogav
-#' @return en tibble med pris og volum fordelt på fylker og sortimentgrupper og år.
-#' @export
-#'
-#' @examples
-#' ssb_skog_omsetning()
-ssb_skog_omsetning = function(){
-  priser_t12750 <- t12750()
-  volum_t03895 <- t03895()
-  begge <-
-    dplyr::full_join(
-      priser_t12750 %>%
-        select(., region, region_kode, ar, treslag, virkeskategori, sortimentgruppe, pris),
-      volum_t03895 %>%
-        dplyr::filter(., ar >= min(priser_t12750$ar)) %>%
-        dplyr::select(., region, region_kode, ar, treslag, volum_m3pris, virkeskategori, sortimentgruppe ) %>%
-        dplyr::group_by(., region, region_kode, ar, treslag, virkeskategori, sortimentgruppe) %>%
-        dplyr::summarize(., volum_m3pris = sum(volum_m3pris)),
-      by = c("region", "region_kode", "ar", "treslag", "virkeskategori", "sortimentgruppe")) %>%
-    dplyr::rowwise() %>%
-    mutate(., omsetning = as.double(pris) * volum_m3pris ) %>%
-    ungroup()
-  return(begge)
-}
 
diff --git a/R/sysdata.rda b/R/sysdata.rda
new file mode 100644
index 0000000000000000000000000000000000000000..111cbd1a197f00028f2aba9df0bc83a970cc85fd
GIT binary patch
literal 6869
zcmZ>Y%CIzaj8qGbw7EFTjUn=P{onup&$&1y*FUiTf8SyM|N9G^7#JLsnHU^67#LU>
z7$0cw`&wgit$~5ThDjns;|&An$}hYD3=C2XtPDX7!3!=h#@@U+scBI|OH*^(NzM&N
z9TqSwVDgf>&A`CZu;2n0lZ6ql6vN47ip!c6ju<p9FiA=>VPG(6`0_Pmv9klS0|P?}
zh+tswGW1ya%7g&~*c3pdlEzY-i@yH8%C|i1Ll`G6U%_x9g@HLMgMpW6%7O-8j*Q7B
zK5G6h4886vm#_FTEAuIXN!sKqxe6g2oI;MvT5VQtm0P}Y`HB+^M*IN`4EzBM_w9CW
zd8t)i_Bq?d^RU3mSJ$1UaA!5`mE&3=HrajU{k*vkZp{`fVHWyV|N6iEqlXr1q5eAi
zn}tmNXfL}{C;R<&S7?Cg(a_L8!i@L5<}&_xYG3kRU7#+$r_4Sl%e3j-^54mV0e_dT
zxDvV9u<(^ZmRWw`N4K71z9;|RI1`g+QEe$M>!tDLlR9_%?HMTtCr^BmXS7+?*3D}2
zvd1Sr98b>JY!tX`j$!Tg$~6xyLk~PDdy^}xp7PK5f7;1g#_JXbzOp@jdQN6x#`lW1
zCyrD~^|%!m|JrI7+p8W^X1pu7Zc%rS|D5_;#$Q6>b_zPL`fQti_pR;rd$r#mRQD%d
zdvmexc-$eWSG&sM*V!h=h1aIOe0uI5`+fQCFV-*oDc^tLaLbS9|NDwtzR&W@e^x2S
zKJi&rRe#{Z@AA&={0APU`$$;i+}xaYZhqxqHNROV880s{_nT`K&(Ald;N<4?wzINk
zIX5@Ax1F7BR$&(C-p<cA*P^22<-<wm`T1s96x`gL-o~x7sZUPU#>U2?0t^Zs9=djW
z?%OL%&r3z!wpeO<v^ctOn?&h!-g$Czk_IIwH>deYS>=5Au&Gb1<lts?ZW|keijtBK
zA98LkKFr?EJHseHefs8=bKluZTq(2Z4?J-u&7yL1;gc*|S*vuz8DC|3k8?>FL>_ME
z=jW9&$@p+_v0JZ{Rl&{8X@2u0tV%8(JnY6dPfkw8q5>p#cCJar$>#Pp-x)T?{*;$L
zPY%4X<4l=V&WD@NxgNS(l-U>_p164FTvJ)A{E0I@S<B3r-S^D!)X{shDsJl;onEu)
zu+Of?$8JXZS!|0*Y>&*`-m~fPu~`)#ANQJEUbpMXlQ5n%YssEt$s12xDKeGnS1w%f
zB+p#B_t@hTZz`pGjwKsTKJnqhN1Hx(<r8PpY<iAQJbdVn#^Ut0Z8;a44<BxC_ve!`
zDh_<Od7iAs;`EY~gAX?!J}l?XCnsyX;^pQ0g~pcIuJdv;jv8j)cD`t__QPlIR`-Aj
z2@DLO=2Kmxqt2~++rYpOmX?-otl*uy?Ucw?(Ftn{wjO(PJCcFv`(Ax<*N<I~B^dOl
zyS(k*vtZAe9gGGmk{ZMharr(=ONwbwwOn&IuGiG*v{KN9^;5KTmMslvV$m@*aAZm3
z@aQo$^jH!mm9^HQz`3(YN|Z%0py$xu%R$Qu-OZ-X+?o>ZxAsKrlDn&;jCoH_*?hQl
zf9tYobF`L5)Ty7dcd3)8Gn`xZq%Ka<_{80#hkEnklpeDl)1A!z?il}h!yC_ecF&2Q
z=<nwD%68?GGHa>cj8A%cu5#xCFSm2u{CO;S;)*@Tgf}G|si+i{TU^|7ufk_ey2z7S
zW3Aiwzm!{?z5YDc^r5Bi^OloKPEOu9`B1Tif6d8V`4-xf)w$2y%QT;}yz%*w*Jfts
zbHwHKS7nsVJ{~#QbF%31g~!z+j}^~V^XsjfD$&)|<F54A{a7;ls~<hirP3DXgy+0B
zxB6mzKK4|tapvwdk6#&8RY=eMd2R7)w~Z3rcAIXWvK8$}`1Nqbit}eyE^1e1KT;{(
zm-1xNqs1C81HESTZ`kq4Zu72wx5XPDew0sqcE00IQcT89_2iw_&JTX(S%t6IaV6Wr
zM_-<=IJ9hLOnR|;&!q~#;PjRqKi!k>R2}>%Qf=IEJUDRWs)HT-1FQO%FZ}BESYLVK
z;ljmNQbXla;<?W6?D%#jP0L#R=>6XF>-4P3OyxCxC%YJ$g*?7xQz!1-X|`<1)wPy?
z=2af5+_-V$m3KEU&oh1{%Jo;&F-*y`nXzt;P}5JN5M#xFKY=YLyEYnyI!+eqnHjXv
zP<3k3kwb|_Vcr5qQza5MC8eB-G}JLlIXPMDWSh@qt&@|rjvP%goSLvHrN=O0)0&yy
zYGD$aQc_N~vAG5FaErE_TH|qYvS^!+&rG8fNh8CAO{qFOVm>}I#e8&T^2}885tHyS
zG)hWInQ0gqCZ?vdW{uA@pBXdOq!=7J*^zQ8<>WMNNu!h_r;L(LPMxe4=CfIIGLH+J
zA(M{Bgru(amn`Dvy1Jfps2iSIuP?lBhr4Dl=Ru_ukEupm7ytg8vU0^?jyo~o&%d2H
z{A@|p-=1GvUiJH$F7cRX*6TGx(POs%>;9?tf@G&fx{B0o>RB3cuvxJ157TKaJ<S}c
zBt1Q2`8g>k14FLtjWg`dda~kWPm00=WrYYfgAGY6oUGGZy+U=%?PvXKxj0$f|AASS
zMajp=xBso9E>^uSpYvSu@)x$Vzv4LE3=XQ^=3!rS=2+_VtYthBhi+&b6Vto)-FAlU
zynC`ni7!r7&npakc{1J0u(R%@#xXUPgFOb$Yz8}a7OSp{Y?hcVUd(#uTeXd;`u5G7
zbC1nD*4O5omCV<et?YEo%`IT<%8;)H)wc8G&dz)EX!*+gx-H-Ip0;dVux*RjwbpeP
zwoaTd@y-Ktex9T5v8z8tOO*Sw-a1&W(=|OMbZKXh%{;kp)rL|t%1?jINquOrwWHE3
z$#_k^@a-l)zwM1Y{@yAxdyk3)9_q54VWV+!GOMJ~NiTzhgUzZlwX}4;N*JYp3s{qk
zYsrG?>*f@0HQDhba>X@2DV>|M_dKu4j=HvW*}8Y{Zp}KabNbAg%QNq37dBN|^E0z8
zI_b*l>9VOy%x6l*&CM6zoP2R5bH&9Q*QCGBoFC*qvFXH)6{@Z(Ix$r<ZKZAHdXM$&
zb^WIGH(lqIt%RP=w3vu#0aIckRj1S+>xk@F)H|==oo`RSdvRa3&Np3;MT<J$WqkN}
z`Ea^&;PPUw`!;93lq~Yn=nQlTnS60^dpkcrkE{E{)%QMqQa-U_lAKA&&4<m04WCqY
zpZj!v;v?Z>XXaXzyqs(}z29wdba7?cJe7WaH(x28k2j7a{a!gO^G48w&dbZr%Js=r
zR9VVc6x?=Sao+sSX8%CW|KT%ce${T{kykoxkZ^Lcn$L{HR*gkxL}HSR0w<l7G)lP`
z*e3Q`cdJyd>zj*{9a-2oqmK0Mkyw)$rOz+U;Wf3Z=+2KB1{n`Oo;W$<^qm^HCD*Li
zoXtAlRAXcOaz?7lQjtKPn8+Z{l7N$!FFt(n;Y!BM<-Km^YmJRUa<)!&4Gf7a3+mSE
zleBm^<KbqX<BK=W$&Q@4XvNKvP*GQJt!}+jn@;H*Jk~eYQu^J_X&EJft|Ec1LR}gM
z11GEV?0QmiJ!#|FO)pFm-jtqrd2mnZnR7=HE>3nkJJTx7D0S|;qyisFqnwK?E>25M
z`!2dR;byZsuWZT79XEHJNqLh#-7Mke;db7+W;rM4ls&z8IsITW8;_(xWYe`&QPI?y
z7CAR3t92R6xy{O*E}d{COXp;Bn;R1|_fEwgpCl(oMW0y1zBv<p|Lxn9@GVd0<H_>O
z4_!TLm2ysQIy-OigLme7k(1eYC5<KXOy|Vxl`_hBlX7uda=Y>D>5o(AT4cP*IC*Sw
z^wHBFRSF(HEKE=CJ8m7Zb90*StQt#M>%B2AFMZ0`T-f`ls^H<`!^?PNDn6N1u8r9r
z<ay|L^19>6v)-;-KKbDtIY}dp#cn=RQjH>0MIr+`cASY!oox`gII!96(Y4FDMu!Uv
zSDY|m3+iEF5!@wbl>1mzX~`ltg)@>_F;~{Sue#PZH}^@xb?u-VFV8&*U9~i4vs*vU
z+@3kd^K#x7B<u<86gzYyI^p0p9_fUGdkYf|J7oLwRX#lvxcS`giOmv*JQBwQCrg|R
zZ(4D%Ea}a`vdD^lzG)RN&-^TU@$#0|Y5i%j4|a!6bq#F#*vw`qE^Cr|U2mEB85v#I
zq*IHYil!dtm9RbbGkD_L^yK9{<<o5!`AYR<yPgsI@>TL$?u~=Jrc&o}O#%;JZ0gck
z?B;C{m@3(p)MXMl<4netly?TVZsgpNl~}B0w6KL^#eoYSWsgeSnA#aVBPn&}%x&t6
zk5BBa%n#I9$z?01vZzx_%Vnjj^2PalyNb8$vJ{ClIN9c7l-Mr0a@*m|W<^(5k(9^6
zfl*f?1DzH+Ek1XwH_N@#)v3!>T32VK>%ln9OdEqc=^8~gX+|eSZgy;W7n;79ty^Q!
zDUHoyfvF-!F(C<y+j*o+^>i-Iyv}px^I|JizQCyh3XVzla<{AA*}c+ujm(uZw~M>)
zN}0>{r20jAsRm{*)mf$09XnNH?V7`4QP-m0tkTWa>Y5VuX4%<ev(jC?bjzY%hO7#j
za&el3SICr=&Ai7Xjq=ho8-p(HZ1WR~EKHpiv6*#R!lu(&(gtaLcMhI-bFDac%huz{
zf;&#mSk$%ly~MH4l~ZT0dGa)M=31{)JFabb6WFS;(kMw!O{6Pe(aN}Mo4S0CE=%gz
zDKV|k?X<?C(>jZ~bycUui6k6MoqAQ)U|HDKW6FXZ7oFJz1YBl$K4mRc=(%geXLNee
zqGjE>-kN1W-Q6Lfu8|>85tCZ9yo8o4R0vt(DHO006tXFY)g%?3OGSw@C!N;Wbjo1s
zr7n$yfo_k^PD!{pX+y&1oohB6TC_N@*(qQ}@0QuiZl$;=oGwb?TCrg@x4~f^BOQap
zHi?MDW@VlksWIun>XE<sZ~UD8V1LZL+Td#8jGdz5QijrQivxcPe?7NYF!k`p6Dw{8
zcC2_4lk&H#*G+Kdi8F<B(yvSG|N1-qcRJ^>o#!}@yeR2?=KK7z?6Z?w?qyn>`|P>o
zx#j$A&&|!<CJS$TWvBF5eZ`YpS9RWFiw)nJg){fu%+@pZyjM8O_p;V&i?hp?d+xcG
zYgG60R*7%&k{4S{=REVjYvr5&=4F9}-)3RYB~MMQ!#?jR*4te2q%hNL{<fky>0P%9
z<}Q!i_4Vv+-{r=9o7FaZ-n^ApFlV{soh{SyjO7+B77Q%>+^;g%ZSj>nneLpD*=Lt+
zp7YS?)Po8?<CceEr`3GjR~%`bF4mr`{v%#v$4g^buO9bnC2yw6xi0HZ-%)(xOpV)V
z_Z3e{<%^ds{JK@Df0eP6(U01W4_{?1q9m)6Q;TMwzyEjgo@*(8?{9mNYw0sTr^?oS
z$H^T#wq$nPT=e+F8B^(Ash(pzrZzi{<eBnM@lh7+IQhA|EvfIMmd?S#8CSAIO2uXD
zUVcf_tMD(}@$klC9@mpIR*HW+zT)JJGcie~5?zLp=2ATpz0U9Y+yuYWDsSw#`Oa?Y
z%<^}JqEf!Li*IfTO#i88GRsvy`p|sA6IaT#EM>x(F6CRFRS#}?Y?N(2H|_J1d%0$F
zmVM5+baLtI<em@nj1N`#TVDH~crDdh@AAq?AHP=k*&qJ0__O=3_-mK!m(^AL>-@89
z`K$St+b;fAe{D8%&ApVD1{V)Uyj<~jcE4KxM>pk-y>gGwt$4RMRpLt3*QUjjW3E)n
zboIUc{rSXBl~1BdJ&Voff1Q6U=Rv{jU8g;d<=ZSbd1!yEXwGxXGfSRNN}RNAS^U1T
zS=u{)KdZm+FPLv~<AG}h7U$p3@@r?gSKqk$*vwe9*HiB7-<5CQc&~h>sm<~q=MAo=
z{4<s^vTauO?DlMSR$Z$v*e%iPeyc_$&CC5<mfefrOa3SeH@==}HrwY%ui1Q=>%p1d
z`;1*5%scsC>Beh=hgS1;UaIyJ{&DX4+L!TF`4)aE-~2oun%GXR{QG&!Kk-=~WYzyJ
zw|q6PR(;8Lv)TT$@~zKL%QUfz_^E!>WZudr)#`KJ$0on`k2$qv{zEg{$$yr8E_ver
zLu;<WDbJ_v_P5%ee40E%D`brruMoG(RIMW`%l0`Ywyg2FA&?QWFi6EmO)F6;Fe#*%
znUhs3=^Epdg~6N`uI`$&t4Y;Ibz<t#qv9E}lDK*$cIkiCl|R|fx#zpIpW&b7<(Fp0
zsJ-qv+;S@;*JRdt&B=34ZYi66)=zlOrHq0ZY4$N?20v_-9v22qo;dmL{wgg)5rdk?
zh2Lk+-}h52Q>uUFH`V>27Z>wBUb$%2xn~wWvwYHny^T)Y$~D^Uvp#vr#rl#L`Ic@{
z{?4U`*7n|7Gh?R7OjFy*J(qG4&!*f;&A0T8@lD&@bK{n+@!6tz!XNyew_Lep_9SVQ
z_MJqF)ETRdrFy1I_PQy5`KjhJ&+YNXos+%#j$7MHUUAjr?PNW-Q)QB;N{fl#sf-zX
zoD&Ts=1h*9eAl$UtLF17yXGzLl9yx}{8n3WvVY2@%Jb{$B=0;lDxc@Jc{|UEGq>iZ
zR~{<xne)uje^Ukjp=x!_Emyw8b6v`oTAg_;am!09qm=hDYVP-{d#1~-*zqn|@K67W
z9mh{C7VUU+M!J8OzTu3MH-0NmEG#Ts`AfOZHC3u7>2cxpQ}!BLGGA$alkDH8@uWy=
zZ<=44%yaD}Z^~{QR?n5vF-rM+Vzv3)WP^t*JAN)pHhhwHew#5*&eK)*qm$h|w|oho
zbE(pAbLqEvkCjedE0}#Yz4FNGT=Q8mYMXDH%@aPhecqKfpZPmZY)V>h@^RMJc_;Tg
zx1GG^TEVO^?RRnEQ(jy6ZO$l@S@vw!vS~hh()8Gm6?}8kw|r>n|I{Yk^7D>;?JM(5
z_Mcu=$N9nRTEXmd>6&YPEob>;ot~`k_Gsb%w#8rn^ecBSbyrH#xNyc~)~xw4r?TFg
z%=W$XsGoCk=9+xFs>gPjlYffuxKuJP*fHPotjH|i<(Vh`u=(<BtrI@@YR=_g^<rVQ
zi<8$}Dw(6cK6CQSHIFUNUE4n8`!T=CHzM8tr{2n$<$fvU)I&Ry-|CWkzAt=#BC$F6
zTvo0`rnUcBi*rGrECVn6@C#nK<)z)p4|DoT9-7WGzLah1H+jml{l<}detD;Sm=}C3
z+xm>Z=GAZhMwd$FsvpX<`+2DL@~88hFX}hX`7&STwfU@hH{RNIcYgOXK3AnP@8o39
z$p_6>?MQlQbXhGjhHrDvv$tl&^S<u+{rPgtDWjC1%cgal7S^`CY%g>8s@<16pFYQ0
z`0}btH!i7^H2u{zx5xcux1F+JMbC^KyBGf~_MY;rYMHOkEFC}LMej}KrhBVhUO2hu
zQPI?IwZT)K+s`?9t~94`?lQkL-{qW#Dy2fMrCetHcBb1|<I_x&nc90!{N{08bINpv
zuA2Dcq~y$dx#n}#4cGj5e$@JtO*pgLy~{6V`<_oc?%#U+$cNb<XWfar`5@cI|M_E!
zb4d?oFI%?tP_^3X$X9dJBPUO}x8u0x<m=}8>oT$>(oE;5`TFctK9^BC=lPR)PyPfS
z%ayArQ1_h7t2Wtl%fHmgl~XrYPCR?A_QlWT#S1>pwDg}=HeYe$Q?prqCl6)Yi+prF
z-S^~9<SV<!hTqgDzWvg7(Jfq5Y0+t&qsoCZR@#?^)VV&e$UV7i<Lh~wek{|CI=-uL
z*5bCwo)_cVK9^j}%Zqt-dD`Zc@8+HSlWzGaWxvK>)`K^ed=(K3pLbgQs$|cDKgnv7
z#a8aQ6wY}q(|o30u*l0J7o~14c~Mim=UPVL+~xbK)uVnrKQBN1Yw_H4=CyIk+(rf|
zDMvO-`bZj1)|nw`kaDE*@}AEoHjfpZ=5(HzXw=Tp_rZ3{wH>j|?94MKCkIzvULCC;
z^QuDHe^!Nm;-O6I^Lth-S2pZi>$W7zD00S%?ME{COfJYic3Kw1aHO+kWq^`P>}Hpn
zb}yGawEKAHS+3om=O$79a~{pw^UOcxQsGQXUv<s4WuI>xdT3PT`<&}$#o4sY+UKgC
zwQam>?bd$krRgmG#O_b>g+HI~cy0W;U-_!}{G3NO<$GrAoN22*scy=f{W8zZ<~+Y`
zGAI3s`|~)_Lq+owZPXvFoqDdW^OySc%wwtXOHLKoYZcCW`DNbDg>SqrCB-H#ymjr$
zsUutGPs^1(|2TZ+<j7k!#e0skzMhf3G38eAe3cjTWj@Tb4|(|M`~~;(cAX#QUzC(A
zm>=?0`s7bF8K01pQ}S&|nMS_qniGCMKWb|7)I9vOQK4OXZ>{lx7h#hl_gwfo%UAtY
znP>TIxt-T4&R;e$oo8IO$9I`JbLz6BN1J?~t^DA>u5gx=kL)uw;fcqxZ9jjq-ztCo
zx7GQQFLRdPwRb9;Kdo}z=j&#(4zBt0+2!+0%kw2axp&$HFS(RiFsDD~Z+7I~sB>p|
z(=)y;KQUv*Za?A3-#gB!UGA0pxpv`&7n=%ZtNAYT@zpEt{N$T1e5$5+ifwV_>v_hf
zvQ6f>O}=hwzM;zJ<U6YxiCvzBfv;?O4F8<s-zXmb`=~_U>F$3vF*CYU{_yYFJS9(K
zW?%L4M@D&%Ev0`wf6zbSrO6gw^)0t@_Osk9D4cO={j{p(ky}na$hY!U?|p3aY3_32
z%GdL5UaM61oOU_$T1{}v$9X%Ce3-ABoA{*st%a1t?z7J$C#z2>uv@w2v$0{-^5k>b
z*5Q3eAKgkhoH<|R;M0n8!jZ3Mn)*%loZNFM-<D6$ICJ5Wl#es*0=K-1SbZqvTAEJI
zZ(c)PJEhC-y1Tn4zqVUi<M!C|SmE4fm$y8t@^g=TH)~#Z#hzzVo}4_C^5$rKV@t|K
zyOm4pp1;kv@RwY8tzec<+|6tGM!C|PD$dOE>GnL7Z<=qv)MW0m&6f()CHI)joV@3f
zu3B91XWy$g&(&;hd2jcqWZuJTzAuF*UbJBKQePurFxO?FkotmIexjy+M|V!OxA`zj
z{p6v1^BFan=jt-A%=U?rKL3?}&71kDhaOycXzHupa;rvpZ_d8T?)!F@N9~07{4MUe
zaMSM3>DM!D)Gyld=iGiaQ)-RD$9T!5%l!9T`RcnY^jd}bzUpV6uiNeXd^XKb_*k*;
z^30><f#09`7(^Os8?E>JJnO6e3)|0)?`HX`AHHuJce1_ZXXZn@%u{ulYwo3dm~AqD
z??1)Be?^>sJ4IaW44?Z?<$E!2Rie>UrH$6j)%G#}ZXT=K_21>Y|5>}rU+Q;igYVis
z?m6G`bNOWp|BLo3Bdz?3U(Dy+RUdNYrTm1~X7f`%Se^U4=dIN8>vmg@)d${7-f}JF
z>sh{F&tsXE=NlJ(n>YDj-R10ymkQ_fwoQIJ%m2`B-zkr6`Xle<nibD-^G%<ed9KoD
zz30M(7rxl4O%9HnEj26U@KvLnly7HdpM5s@wxR9BBZ5l72XCZby#8gwlmAEWO!N~`
K;WtT}*Z=_c>}{F=

literal 0
HcmV?d00001

diff --git a/README.md b/README.md
index d510f99..9d9eb1e 100644
--- a/README.md
+++ b/README.md
@@ -4,8 +4,8 @@ Landbruksdirektoratet is providing statistics for annual cut at municipality lev
 in excel sheets, one excel document for each year. 
 https://www.landbruksdirektoratet.no/no/statistikk/skogbruk/tommeravvirkning
 
-SSB provide similar statistics, but at county level, annual resolution and 
-a bit more lagged publication. 
+SSB provide similar statistics, but some of it only at county level, annual resolution and 
+a bit more lagged publication. But longer history. 
 https://www.ssb.no/statbank/list/skogav
 
 
@@ -16,7 +16,9 @@ This should install it to R:
 `devtools::install_git('https://gitlab.nibio.no/hbel/vsop.git')`
 
 Load dependent packages: 
-`invisible(lapply(c("magrittr","stringr","dplyr","tibble","lubridate","readxl","PxWebApiData"),library,character.only =T))`
+`invisible(
+  lapply( c("magrittr","stringr","dplyr","tibble","lubridate","readxl","PxWebApiData"),
+    library,character.only =T))`
   
 Demo: 
 `vsop::ssb_skog_omsetning()`
diff --git a/data-raw/DATASET.R b/data-raw/DATASET.R
new file mode 100644
index 0000000..2aebdb6
--- /dev/null
+++ b/data-raw/DATASET.R
@@ -0,0 +1,152 @@
+## code to prepare `DATASET` dataset goes here
+
+region_at_time_txtfls = function(filename){
+  # function returning the mapping from one region name and code tag to the next according to the SSB region classification
+  #Fylker: https://www.ssb.no/en/klass/klassifikasjoner/104/versjon/1158/koder
+  #Kommuner: https://www.ssb.no/en/klass/klassifikasjoner/131
+
+  #   filename = files[1]
+  #readr::guess_encoding(filename)
+  datastring = readLines(filename, n=-1L,
+                         encoding =  dplyr::pull(readr::guess_encoding(filename)[1,1]),
+                         warn = F)#nchars = 10^6)
+  headings = unlist(stringr::str_split(datastring[1], "\t"))
+  print(headings)
+  datastring = datastring[-1]
+
+  if((length(headings)%% 2) == 0 & length(datastring)>1) {
+    # Then string should be arranged to pairs of "froms" and "tos"
+    datastring = stringr::str_remove(datastring, pattern = "\t")
+    convtable = matrix(data = datastring, ncol = 2, byrow = T)
+    colnames(convtable) = headings
+    headingsinv = unlist(lapply(X= str_split(headings, " "), FUN = function(X){paste0(X[2]," ",  X[1], " 1")}))
+
+    colnamecandidates = stringr::str_sub(
+      stringr::str_replace_all(
+        string = lubridate::ymd(headingsinv),
+        pattern = "-",
+        replacement = ""),
+      start=1, end = 6)
+
+    convtable = dplyr::as_tibble(as.data.frame(convtable, stringsAsFactors=F))
+    froms =  dplyr::as_tibble(
+      str_split(
+        string =  dplyr::pull(convtable[,1]), pattern = " - ", n=2, simplify = T))
+    colnames(froms) = paste(c("reg_code", "reg_name"), rep(colnamecandidates[1], 2), sep = "_")
+
+    tos = dplyr::as_tibble(
+      stringr::str_split(
+        string =  dplyr::pull(convtable[,2]), pattern = " - ", n=2, simplify = T))
+    colnames(tos) = paste(c("reg_code", "reg_name"), rep(colnamecandidates[2], 2), sep = "_")
+
+    fromstos = dplyr::bind_cols(froms, tos)
+  } else if((length(headings)%% 2) == 1 & length(datastring)>1) {
+    # Then it is the starting point, i.e, first array of region units
+
+    convtable = matrix(data = datastring, ncol = 1, byrow = T)
+    #colnames(convtable) = headings
+    headingsinv =
+      unlist(lapply(X= stringr::str_split(headings, " "),
+                    FUN = function(X){ paste0(X[2]," ",  X[1], " 1")
+                    }))
+    colnamecandidates =
+      stringr::str_sub(
+        stringr::str_replace_all(
+          string =  lubridate::ymd(headingsinv),
+          pattern = "-",
+          replacement = ""), start=1, end = 6)
+
+    convtable = as.data.frame(convtable, stringsAsFactors=F )
+    froms =  data.frame(
+      stringr::str_split(
+        string =  convtable[,1],
+        pattern = " - ",
+        n=2,
+        simplify = T), stringsAsFactors = F )
+
+    colnames(froms) = paste(c("reg_code", "reg_name"), rep(colnamecandidates[1], 2), sep = "_")
+
+    fromstos = dplyr::as_tibble(froms)
+
+  } else  if((length(headings)%% 2) == 0 & length(datastring) == 0) { # THen it is an empty update but we still need the "update dates"
+
+    headingsinv = unlist(lapply(X= str_split(headings, " "), FUN = function(X){paste0(X[2]," ",  X[1], " 1")}))
+    colnamecandidates = stringr::str_sub(
+      stringr::str_replace_all(
+        string =  lubridate::ymd(headingsinv),
+        pattern = "-",
+        replacement = ""),
+      start=1, end = 6)
+
+    froms = data.frame(
+      matrix(
+        data = c("a", "b"),
+        ncol = 2, byrow = T)[NULL, ],
+      stringsAsFactors = F)
+    colnames(froms) =
+      paste(c("reg_code", "reg_name"), rep(colnamecandidates[1], 2), sep = "_")
+
+    tos = data.frame(
+      matrix(data = c("a", "b"),
+             ncol = 2, byrow = T)[NULL, ],
+      stringsAsFactors = F)
+    colnames(tos) = paste(c("reg_code", "reg_name"), rep(colnamecandidates[2], 2), sep = "_")
+
+    fromstos = dplyr::bind_cols(dplyr::as_tibble(froms), dplyr::as_tibble(tos))
+  } else {fromstos = NULL}
+
+
+  return(fromstos)
+}
+regupdated = function(files){
+  regiondef = region_at_time_txtfls(filename = files[1])
+
+  for (i in 2:length(files)){
+    print(i)
+    regupdate = region_at_time_txtfls(filename = files[i])
+    ## !! coming left_join: It would be best to find a way to join only by the "reg_code_x" variables but I could not find how to type this :-(
+    both = dplyr::left_join(regiondef, regupdate)
+    head(both)
+    regupnames <- names(both)
+    regupnamesl <- length(regupnames)
+    both %>%
+      dplyr::mutate(.,
+                    !!sym(regupnames[regupnamesl-1]) :=
+                      dplyr::case_when(
+                        !is.na(!!dplyr::sym(regupnames[regupnamesl-1])) ~
+                          !!dplyr::sym(regupnames[regupnamesl-1]),
+                        TRUE ~ !!dplyr::sym(regupnames[regupnamesl-3])),
+                    !!sym(regupnames[regupnamesl]) :=
+                      dplyr::case_when(
+                        !is.na(!!dplyr::sym(regupnames[regupnamesl])) ~ !!dplyr::sym(regupnames[regupnamesl]),
+                        TRUE ~ !!dplyr::sym(regupnames[regupnamesl-2]))
+      )  -> regiondef
+  }
+  return(regiondef)
+}
+
+no.regiontabell.flk = function(){
+  #Fylker: https://www.ssb.no/en/klass/klassifikasjoner/104/versjon/1158/koder
+
+  files <-   list.files( path = "./data-raw", pattern = ".txt", full.names = T) %>%
+    .[which(!stringr::str_detect(., "~"))] %>%
+    .[which(stringr::str_detect(., "Regindeling_Fylker"))]
+  inndeling <- regupdated(files = files)
+  return(inndeling)
+}
+
+
+no.regiontabell.kmn = function(){
+  #Kommuner: https://www.ssb.no/en/klass/klassifikasjoner/131
+  files <-   list.files(path = "./data-raw", pattern = ".txt", full.names = T) %>%
+    .[which(!stringr::str_detect(., "~"))] %>%
+    .[which(stringr::str_detect(., "Regindeling_Kommuner"))]
+  inndeling <- regupdated(files = files)
+  return(inndeling)
+
+}
+
+regref_fylke <- no.regiontabell.flk()
+regref_kommune <- no.regiontabell.kmn()
+
+usethis::use_data(regref_kommune, regref_fylke, overwrite = T)
diff --git a/data-raw/Regindeling_Fylker_1972_01_status.txt b/data-raw/Regindeling_Fylker_1972_01_status.txt
new file mode 100644
index 0000000..6dcbdd4
--- /dev/null
+++ b/data-raw/Regindeling_Fylker_1972_01_status.txt
@@ -0,0 +1,21 @@
+januar 1972
+01 - Østfold
+02 - Akershus
+03 - Oslo
+04 - Hedmark
+05 - Oppland
+06 - Buskerud
+07 - Vestfold
+08 - Telemark
+09 - Aust-Agder
+10 - Vest-Agder
+11 - Rogaland
+12 - Hordaland
+14 - Sogn og Fjordane
+15 - Møre og Romsdal
+16 - Sør-Trøndelag
+17 - Nord-Trøndelag
+18 - Nordland
+19 - Troms
+20 - Finnmark Finnmárku
+99 - Uoppgitt
\ No newline at end of file
diff --git a/data-raw/Regindeling_Fylker_2006_7.txt b/data-raw/Regindeling_Fylker_2006_7.txt
new file mode 100644
index 0000000..e9cf87c
--- /dev/null
+++ b/data-raw/Regindeling_Fylker_2006_7.txt
@@ -0,0 +1 @@
+January 1972	July 2006
\ No newline at end of file
diff --git a/data-raw/Regindeling_Fylker_2018_1.txt b/data-raw/Regindeling_Fylker_2018_1.txt
new file mode 100644
index 0000000..b0da95e
--- /dev/null
+++ b/data-raw/Regindeling_Fylker_2018_1.txt
@@ -0,0 +1,5 @@
+juli 2006	januar 2018
+16 - Sør-Trøndelag	
+50 - Trøndelag
+17 - Nord-Trøndelag	
+50 - Trøndelag
\ No newline at end of file
diff --git a/data-raw/Regindeling_Fylker_2020_1.txt b/data-raw/Regindeling_Fylker_2020_1.txt
new file mode 100644
index 0000000..86bc501
--- /dev/null
+++ b/data-raw/Regindeling_Fylker_2020_1.txt
@@ -0,0 +1,27 @@
+januar 2018	januar 2020
+01 - �stfold	
+30 - Viken
+02 - Akershus	
+30 - Viken
+04 - Hedmark	
+34 - Innlandet
+05 - Oppland	
+34 - Innlandet
+06 - Buskerud	
+30 - Viken
+07 - Vestfold	
+38 - Vestfold og Telemark
+08 - Telemark	
+38 - Vestfold og Telemark
+09 - Aust-Agder	
+42 - Agder
+10 - Vest-Agder	
+42 - Agder
+12 - Hordaland	
+46 - Vestland
+14 - Sogn og Fjordane	
+46 - Vestland
+19 - Troms Romsa	
+54 - Troms og Finnmark Romsa ja Finnm�rku
+20 - Finnmark Finnm�rku	
+54 - Troms og Finnmark Romsa ja Finnm�rku
\ No newline at end of file
diff --git a/data-raw/Regindeling_Kommuner_1994_status.txt b/data-raw/Regindeling_Kommuner_1994_status.txt
new file mode 100644
index 0000000..78e1b9e
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_1994_status.txt
@@ -0,0 +1,437 @@
+januar 1994
+0101 - Halden
+0104 - Moss
+0105 - Sarpsborg
+0106 - Fredrikstad
+0111 - Hvaler
+0118 - Aremark
+0119 - Marker
+0121 - Rømskog
+0122 - Trøgstad
+0123 - Spydeberg
+0124 - Askim
+0125 - Eidsberg
+0127 - Skiptvet
+0128 - Rakkestad
+0135 - Råde
+0136 - Rygge
+0137 - Våler
+0138 - Hobøl
+0211 - Vestby
+0213 - Ski
+0214 - Ås
+0215 - Frogn
+0216 - Nesodden
+0217 - Oppegård
+0219 - Bærum
+0220 - Asker
+0221 - Aurskog-Høland
+0226 - Sørum
+0227 - Fet
+0228 - Rælingen
+0229 - Enebakk
+0230 - Lørenskog
+0231 - Skedsmo
+0233 - Nittedal
+0234 - Gjerdrum
+0235 - Ullensaker
+0236 - Nes
+0237 - Eidsvoll
+0238 - Nannestad
+0239 - Hurdal
+0301 - Oslo
+0402 - Kongsvinger
+0403 - Hamar
+0412 - Ringsaker
+0415 - Løten
+0417 - Stange
+0418 - Nord-Odal
+0419 - Sør-Odal
+0420 - Eidskog
+0423 - Grue
+0425 - Åsnes
+0426 - Våler
+0427 - Elverum
+0428 - Trysil
+0429 - Åmot
+0430 - Stor-Elvdal
+0432 - Rendalen
+0434 - Engerdal
+0436 - Tolga
+0437 - Tynset
+0438 - Alvdal
+0439 - Folldal
+0441 - Os
+0501 - Lillehammer
+0502 - Gjøvik
+0511 - Dovre
+0512 - Lesja
+0513 - Skjåk
+0514 - Lom
+0515 - Vågå
+0516 - Nord-Fron
+0517 - Sel
+0519 - Sør-Fron
+0520 - Ringebu
+0521 - Øyer
+0522 - Gausdal
+0528 - Østre Toten
+0529 - Vestre Toten
+0532 - Jevnaker
+0533 - Lunner
+0534 - Gran
+0536 - Søndre Land
+0538 - Nordre Land
+0540 - Sør-Aurdal
+0541 - Etnedal
+0542 - Nord-Aurdal
+0543 - Vestre Slidre
+0544 - Øystre Slidre
+0545 - Vang
+0602 - Drammen
+0604 - Kongsberg
+0605 - Ringerike
+0612 - Hole
+0615 - Flå
+0616 - Nes
+0617 - Gol
+0618 - Hemsedal
+0619 - Ål
+0620 - Hol
+0621 - Sigdal
+0622 - Krødsherad
+0623 - Modum
+0624 - Øvre Eiker
+0625 - Nedre Eiker
+0626 - Lier
+0627 - Røyken
+0628 - Hurum
+0631 - Flesberg
+0632 - Rollag
+0633 - Nore og Uvdal
+0701 - Borre
+0702 - Holmestrand
+0704 - Tønsberg
+0706 - Sandefjord
+0709 - Larvik
+0711 - Svelvik
+0713 - Sande
+0714 - Hof
+0716 - Våle
+0718 - Ramnes
+0719 - Andebu
+0720 - Stokke
+0722 - Nøtterøy
+0723 - Tjøme
+0728 - Lardal
+0805 - Porsgrunn
+0806 - Skien
+0807 - Notodden
+0811 - Siljan
+0814 - Bamble
+0815 - Kragerø
+0817 - Drangedal
+0819 - Nome
+0821 - Bø
+0822 - Sauherad
+0826 - Tinn
+0827 - Hjartdal
+0828 - Seljord
+0829 - Kviteseid
+0830 - Nissedal
+0831 - Fyresdal
+0833 - Tokke
+0834 - Vinje
+0901 - Risør
+0904 - Grimstad
+0906 - Arendal
+0911 - Gjerstad
+0912 - Vegårshei
+0914 - Tvedestrand
+0919 - Froland
+0926 - Lillesand
+0928 - Birkenes
+0929 - Åmli
+0935 - Iveland
+0937 - Evje og Hornnes
+0938 - Bygland
+0940 - Valle
+0941 - Bykle
+1001 - Kristiansand
+1002 - Mandal
+1003 - Farsund
+1004 - Flekkefjord
+1014 - Vennesla
+1017 - Songdalen
+1018 - Søgne
+1021 - Marnardal
+1026 - Åseral
+1027 - Audnedal
+1029 - Lindesnes
+1032 - Lyngdal
+1034 - Hægebostad
+1037 - Kvinesdal
+1046 - Sirdal
+1101 - Eigersund
+1102 - Sandnes
+1103 - Stavanger
+1106 - Haugesund
+1111 - Sokndal
+1112 - Lund
+1114 - Bjerkreim
+1119 - Hå
+1120 - Klepp
+1121 - Time
+1122 - Gjesdal
+1124 - Sola
+1127 - Randaberg
+1129 - Forsand
+1130 - Strand
+1133 - Hjelmeland
+1134 - Suldal
+1135 - Sauda
+1141 - Finnøy
+1142 - Rennesøy
+1144 - Kvitsøy
+1145 - Bokn
+1146 - Tysvær
+1149 - Karmøy
+1151 - Utsira
+1154 - Vindafjord
+1201 - Bergen
+1211 - Etne
+1214 - Ølen
+1216 - Sveio
+1219 - Bømlo
+1221 - Stord
+1222 - Fitjar
+1223 - Tysnes
+1224 - Kvinnherad
+1227 - Jondal
+1228 - Odda
+1231 - Ullensvang
+1232 - Eidfjord
+1233 - Ulvik
+1234 - Granvin
+1235 - Voss
+1238 - Kvam
+1241 - Fusa
+1242 - Samnanger
+1243 - Os
+1244 - Austevoll
+1245 - Sund
+1246 - Fjell
+1247 - Askøy
+1251 - Vaksdal
+1252 - Modalen
+1253 - Osterøy
+1256 - Meland
+1259 - Øygarden
+1260 - Radøy
+1263 - Lindås
+1264 - Austrheim
+1265 - Fedje
+1266 - Masfjorden
+1401 - Flora
+1411 - Gulen
+1412 - Solund
+1413 - Hyllestad
+1416 - Høyanger
+1417 - Vik
+1418 - Balestrand
+1419 - Leikanger
+1420 - Sogndal
+1421 - Aurland
+1422 - Lærdal
+1424 - Årdal
+1426 - Luster
+1428 - Askvoll
+1429 - Fjaler
+1430 - Gaular
+1431 - Jølster
+1432 - Førde
+1433 - Naustdal
+1438 - Bremanger
+1439 - Vågsøy
+1441 - Selje
+1443 - Eid
+1444 - Hornindal
+1445 - Gloppen
+1449 - Stryn
+1502 - Molde
+1503 - Kristiansund
+1504 - Ålesund
+1511 - Vanylven
+1514 - Sande
+1515 - Herøy
+1516 - Ulstein
+1517 - Hareid
+1519 - Volda
+1520 - Ørsta
+1523 - Ørskog
+1524 - Norddal
+1525 - Stranda
+1526 - Stordal
+1528 - Sykkylven
+1529 - Skodje
+1531 - Sula
+1532 - Giske
+1534 - Haram
+1535 - Vestnes
+1539 - Rauma
+1543 - Nesset
+1545 - Midsund
+1546 - Sandøy
+1547 - Aukra
+1548 - Fræna
+1551 - Eide
+1554 - Averøy
+1556 - Frei
+1557 - Gjemnes
+1560 - Tingvoll
+1563 - Sunndal
+1566 - Surnadal
+1567 - Rindal
+1569 - Aure
+1571 - Halsa
+1572 - Tustna
+1573 - Smøla
+1601 - Trondheim
+1612 - Hemne
+1613 - Snillfjord
+1617 - Hitra
+1620 - Frøya
+1621 - Ørland
+1622 - Agdenes
+1624 - Rissa
+1627 - Bjugn
+1630 - Åfjord
+1632 - Roan
+1633 - Osen
+1634 - Oppdal
+1635 - Rennebu
+1636 - Meldal
+1638 - Orkdal
+1640 - Røros
+1644 - Holtålen
+1648 - Midtre Gauldal
+1653 - Melhus
+1657 - Skaun
+1662 - Klæbu
+1663 - Malvik
+1664 - Selbu
+1665 - Tydal
+1702 - Steinkjer
+1703 - Namsos
+1711 - Meråker
+1714 - Stjørdal
+1717 - Frosta
+1718 - Leksvik
+1719 - Levanger
+1721 - Verdal
+1723 - Mosvik
+1724 - Verran
+1725 - Namdalseid
+1729 - Inderøy
+1736 - Snåsa
+1738 - Lierne
+1739 - Røyrvik
+1740 - Namsskogan
+1742 - Grong
+1743 - Høylandet
+1744 - Overhalla
+1748 - Fosnes
+1749 - Flatanger
+1750 - Vikna
+1751 - Nærøy
+1755 - Leka
+1804 - Bodø
+1805 - Narvik
+1811 - Bindal
+1812 - Sømna
+1813 - Brønnøy
+1815 - Vega
+1816 - Vevelstad
+1818 - Herøy
+1820 - Alstahaug
+1822 - Leirfjord
+1824 - Vefsn
+1825 - Grane
+1826 - Hattfjelldal
+1827 - Dønna
+1828 - Nesna
+1832 - Hemnes
+1833 - Rana
+1834 - Lurøy
+1835 - Træna
+1836 - Rødøy
+1837 - Meløy
+1838 - Gildeskål
+1839 - Beiarn
+1840 - Saltdal
+1841 - Fauske
+1842 - Skjerstad
+1845 - Sørfold
+1848 - Steigen
+1849 - Hamarøy
+1850 - Tysfjord
+1851 - Lødingen
+1852 - Tjeldsund
+1853 - Evenes
+1854 - Ballangen
+1856 - Røst
+1857 - Værøy
+1859 - Flakstad
+1860 - Vestvågøy
+1865 - Vågan
+1866 - Hadsel
+1867 - Bø
+1868 - Øksnes
+1870 - Sortland
+1871 - Andøy
+1874 - Moskenes
+1901 - Harstad
+1902 - Tromsø
+1911 - Kvæfjord
+1913 - Skånland
+1915 - Bjarkøy
+1917 - Ibestad
+1919 - Gratangen
+1920 - Lavangen
+1922 - Bardu
+1923 - Salangen
+1924 - Målselv
+1925 - Sørreisa
+1926 - Dyrøy
+1927 - Tranøy
+1928 - Torsken
+1929 - Berg
+1931 - Lenvik
+1933 - Balsfjord
+1936 - Karlsøy
+1938 - Lyngen
+1939 - Storfjord
+1940 - Kåfjord
+1941 - Skjervøy
+1942 - Nordreisa
+1943 - Kvænangen
+2002 - Vardø
+2003 - Vadsø
+2004 - Hammerfest
+2011 - Kautokeino
+2012 - Alta
+2014 - Loppa
+2015 - Hasvik
+2017 - Kvalsund
+2018 - Måsøy
+2019 - Nordkapp
+2020 - Porsanger
+2021 - Kárásjohka - Karasjok
+2022 - Lebesby
+2023 - Gamvik
+2024 - Berlevåg
+2025 - Deatnu - Tana
+2027 - Unjárga - Nesseby
+2028 - Båtsfjord
+2030 - Sør-Varanger
+9999 - Unknown
diff --git a/data-raw/Regindeling_Kommuner_2002_01.txt b/data-raw/Regindeling_Kommuner_2002_01.txt
new file mode 100644
index 0000000..1d27b79
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2002_01.txt
@@ -0,0 +1,7 @@
+Januar 1994	Januar 2002
+0716 - Våle	
+0716 - Re
+0718 - Ramnes	
+0716 - Re
+1214 - Ølen	
+1159 - Ølen
diff --git a/data-raw/Regindeling_Kommuner_2002_06.txt b/data-raw/Regindeling_Kommuner_2002_06.txt
new file mode 100644
index 0000000..c1716ce
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2002_06.txt
@@ -0,0 +1,3 @@
+Januar 2002	Juni 2002
+0701 - Borre	
+0701 - Horten
diff --git a/data-raw/Regindeling_Kommuner_2004_01.txt b/data-raw/Regindeling_Kommuner_2004_01.txt
new file mode 100644
index 0000000..fe7e63b
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2004_01.txt
@@ -0,0 +1,3 @@
+juni 2002	januar 2004
+2020 - Porsanger	
+2020 - Porsanger
diff --git a/data-raw/Regindeling_Kommuner_2005_01.txt b/data-raw/Regindeling_Kommuner_2005_01.txt
new file mode 100644
index 0000000..14f2b48
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2005_01.txt
@@ -0,0 +1,5 @@
+januar 2004	januar 2005
+1804 - Bodø	
+1804 - Bodø
+1842 - Skjerstad	
+1804 - Bodø
diff --git a/data-raw/Regindeling_Kommuner_2006_01.txt b/data-raw/Regindeling_Kommuner_2006_01.txt
new file mode 100644
index 0000000..6b1b29d
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2006_01.txt
@@ -0,0 +1,9 @@
+januar 2005	januar 2006
+1154 - Vindafjord	
+1160 - Vindafjord
+1159 - Ølen	
+1160 - Vindafjord
+1569 - Aure	
+1576 - Aure
+1572 - Tustna	
+1576 - Aure
diff --git a/data-raw/Regindeling_Kommuner_2008_01.txt b/data-raw/Regindeling_Kommuner_2008_01.txt
new file mode 100644
index 0000000..91b98bd
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2008_01.txt
@@ -0,0 +1,5 @@
+januar 2006	januar 2008
+1503 - Kristiansund	
+1505 - Kristiansund
+1556 - Frei	
+1505 - Kristiansund
diff --git a/data-raw/Regindeling_Kommuner_2012_01.txt b/data-raw/Regindeling_Kommuner_2012_01.txt
new file mode 100644
index 0000000..49a0b97
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2012_01.txt
@@ -0,0 +1,5 @@
+januar 2008	januar 2012
+1723 - Mosvik	
+1756 - Inderøy
+1729 - Inderøy	
+1756 - Inderøy
diff --git a/data-raw/Regindeling_Kommuner_2013_01.txt b/data-raw/Regindeling_Kommuner_2013_01.txt
new file mode 100644
index 0000000..f288f27
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2013_01.txt
@@ -0,0 +1,11 @@
+januar 2012	januar 2013
+1736 - Snåsa	
+1736 - Snåsa
+1849 - Hamarøy	
+1849 - Hamarøy
+1850 - Tysfjord	
+1850 - Tysfjord
+1901 - Harstad	
+1903 - Harstad
+1915 - Bjarkøy	
+1903 - Harstad
diff --git a/data-raw/Regindeling_Kommuner_2017_01.txt b/data-raw/Regindeling_Kommuner_2017_01.txt
new file mode 100644
index 0000000..44266ef
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2017_01.txt
@@ -0,0 +1,7 @@
+Januar 2013	Januar 2017
+0706 - Sandefjord	
+0710 - Sandefjord
+0719 - Andebu	
+0710 - Sandefjord
+0720 - Stokke	
+0710 - Sandefjord
diff --git a/data-raw/Regindeling_Kommuner_2018_01.txt b/data-raw/Regindeling_Kommuner_2018_01.txt
new file mode 100644
index 0000000..1bab60f
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2018_01.txt
@@ -0,0 +1,109 @@
+Januar 2017	Mai 2018
+0702 - Holmestrand	
+0715 - Holmestrand
+0709 - Larvik	
+0712 - Larvik
+0714 - Hof	
+0715 - Holmestrand
+0722 - Nøtterøy	
+0729 - Færder
+0723 - Tjøme	
+0729 - Færder
+0728 - Lardal	
+0712 - Larvik
+1601 - Trondheim	
+5001 - Trondheim
+1612 - Hemne	
+5011 - Hemne
+1613 - Snillfjord	
+5012 - Snillfjord
+1617 - Hitra	
+5013 - Hitra
+1620 - Frøya	
+5014 - Frøya
+1621 - Ørland	
+5015 - Ørland
+1622 - Agdenes	
+5016 - Agdenes
+1624 - Rissa	
+5054 - Indre Fosen
+1627 - Bjugn	
+5017 - Bjugn
+1630 - Åfjord	
+5018 - Åfjord
+1632 - Roan	
+5019 - Roan
+1633 - Osen	
+5020 - Osen
+1634 - Oppdal	
+5021 - Oppdal
+1635 - Rennebu	
+5022 - Rennebu
+1636 - Meldal	
+5023 - Meldal
+1638 - Orkdal	
+5024 - Orkdal
+1640 - Røros	
+5025 - Røros
+1644 - Holtålen	
+5026 - Holtålen
+1648 - Midtre Gauldal	
+5027 - Midtre Gauldal
+1653 - Melhus	
+5028 - Melhus
+1657 - Skaun	
+5029 - Skaun
+1662 - Klæbu	
+5030 - Klæbu
+1663 - Malvik	
+5031 - Malvik
+1664 - Selbu	
+5032 - Selbu
+1665 - Tydal	
+5033 - Tydal
+1702 - Steinkjer	
+5004 - Steinkjer
+1703 - Namsos	
+5005 - Namsos
+1711 - Meråker	
+5034 - Meråker
+1714 - Stjørdal	
+5035 - Stjørdal
+1717 - Frosta	
+5036 - Frosta
+1718 - Leksvik	
+5054 - Indre Fosen
+1719 - Levanger	
+5037 - Levanger
+1721 - Verdal	
+5038 - Verdal
+1724 - Verran	
+5039 - Verran
+1725 - Namdalseid	
+5040 - Namdalseid
+1736 - Snåase Snåsa	
+5041 - Snåase - Snåsa
+1738 - Lierne	
+5042 - Lierne
+1739 - Røyrvik
+5043 - Raarvihke - Røyrvik
+1740 - Namsskogan	
+5044 - Namsskogan
+1742 - Grong	
+5045 - Grong
+1743 - Høylandet	
+5046 - Høylandet
+1744 - Overhalla	
+5047 - Overhalla
+1748 - Fosnes	
+5048 - Fosnes
+1749 - Flatanger	
+5049 - Flatanger
+1750 - Vikna	
+5050 - Vikna
+1751 - Nærøy	
+5051 - Nærøy
+1755 - Leka	
+5052 - Leka
+1756 - Inderøy	
+5053 - Inderøy
\ No newline at end of file
diff --git a/data-raw/Regindeling_Kommuner_2019_01.txt b/data-raw/Regindeling_Kommuner_2019_01.txt
new file mode 100644
index 0000000..3e04ac6
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2019_01.txt
@@ -0,0 +1,3 @@
+Mai 2018	January 2019
+1567 - Rindal	
+5061 - Rindal
\ No newline at end of file
diff --git a/data-raw/Regindeling_Kommuner_2020_01.txt b/data-raw/Regindeling_Kommuner_2020_01.txt
new file mode 100644
index 0000000..2882c90
--- /dev/null
+++ b/data-raw/Regindeling_Kommuner_2020_01.txt
@@ -0,0 +1,619 @@
+January 2019	January 2020
+0101 - Halden	
+3001 - Halden
+0104 - Moss	
+3002 - Moss
+0105 - Sarpsborg	
+3003 - Sarpsborg
+0106 - Fredrikstad	
+3004 - Fredrikstad
+0111 - Hvaler	
+3011 - Hvaler
+0118 - Aremark	
+3012 - Aremark
+0119 - Marker	
+3013 - Marker
+0121 - Rømskog	
+3026 - Aurskog-Høland
+0122 - Trøgstad	
+3014 - Indre Østfold
+0123 - Spydeberg	
+3014 - Indre Østfold
+0124 - Askim	
+3014 - Indre Østfold
+0125 - Eidsberg	
+3014 - Indre Østfold
+0127 - Skiptvet	
+3015 - Skiptvet
+0128 - Rakkestad	
+3016 - Rakkestad
+0135 - Råde	
+3017 - Råde
+0136 - Rygge	
+3002 - Moss
+0137 - Våler	
+3018 - Våler (Viken)
+0138 - Hobøl	
+3014 - Indre Østfold
+0211 - Vestby	
+3019 - Vestby
+0213 - Ski	
+3020 - Nordre Follo
+0214 - Ås	
+3021 - Ås
+0215 - Frogn	
+3022 - Frogn
+0216 - Nesodden	
+3023 - Nesodden
+0217 - Oppegård	
+3020 - Nordre Follo
+0219 - Bærum	
+3024 - Bærum
+0220 - Asker	
+3025 - Asker
+0221 - Aurskog-Høland	
+3026 - Aurskog-Høland
+0226 - Sørum	
+3030 - Lillestrøm
+0227 - Fet	
+3030 - Lillestrøm
+0228 - Rælingen	
+3027 - Rælingen
+0229 - Enebakk	
+3028 - Enebakk
+0230 - Lørenskog	
+3029 - Lørenskog
+0231 - Skedsmo	
+3030 - Lillestrøm
+0233 - Nittedal	
+3031 - Nittedal
+0234 - Gjerdrum	
+3032 - Gjerdrum
+0235 - Ullensaker	
+3033 - Ullensaker
+0236 - Nes	
+3034 - Nes
+0237 - Eidsvoll	
+3035 - Eidsvoll
+0238 - Nannestad	
+3036 - Nannestad
+0239 - Hurdal	
+3037 - Hurdal
+0402 - Kongsvinger	
+3401 - Kongsvinger
+0403 - Hamar	
+3403 - Hamar
+0412 - Ringsaker	
+3411 - Ringsaker
+0415 - Løten	
+3412 - Løten
+0417 - Stange	
+3413 - Stange
+0418 - Nord-Odal	
+3414 - Nord-Odal
+0419 - Sør-Odal	
+3415 - Sør-Odal
+0420 - Eidskog	
+3416 - Eidskog
+0423 - Grue	
+3417 - Grue
+0425 - Åsnes	
+3418 - Åsnes
+0426 - Våler	
+3419 - Våler (Hedmark)
+0427 - Elverum	
+3420 - Elverum
+0428 - Trysil	
+3421 - Trysil
+0429 - Åmot	
+3422 - Åmot
+0430 - Stor-Elvdal	
+3423 - Stor-Elvdal
+0432 - Rendalen	
+3424 - Rendalen
+0434 - Engerdal	
+3425 - Engerdal
+0436 - Tolga	
+3426 - Tolga
+0437 - Tynset	
+3427 - Tynset
+0438 - Alvdal	
+3428 - Alvdal
+0439 - Folldal	
+3429 - Folldal
+0441 - Os	
+3430 - Os
+0501 - Lillehammer	
+3405 - Lillehammer
+0502 - Gjøvik	
+3407 - Gjøvik
+0511 - Dovre	
+3431 - Dovre
+0512 - Lesja	
+3432 - Lesja
+0513 - Skjåk	
+3433 - Skjåk
+0514 - Lom	
+3434 - Lom
+0515 - Vågå	
+3435 - Vågå
+0516 - Nord-Fron	
+3436 - Nord-Fron
+0517 - Sel	
+3437 - Sel
+0519 - Sør-Fron	
+3438 - Sør-Fron
+0520 - Ringebu	
+3439 - Ringebu
+0521 - Øyer	
+3440 - Øyer
+0522 - Gausdal	
+3441 - Gausdal
+0528 - Østre Toten	
+3442 - Østre Toten
+0529 - Vestre Toten	
+3443 - Vestre Toten
+0532 - Jevnaker	
+3053 - Jevnaker
+0533 - Lunner	
+3054 - Lunner
+0534 - Gran	
+3446 - Gran
+0536 - Søndre Land	
+3447 - Søndre Land
+0538 - Nordre Land	
+3448 - Nordre Land
+0540 - Sør-Aurdal	
+3449 - Sør-Aurdal
+0541 - Etnedal	
+3450 - Etnedal
+0542 - Nord-Aurdal	
+3451 - Nord-Aurdal
+0543 - Vestre Slidre	
+3452 - Vestre Slidre
+0544 - Øystre Slidre	
+3453 - Øystre Slidre
+0545 - Vang	
+3454 - Vang
+0602 - Drammen	
+3005 - Drammen
+0604 - Kongsberg	
+3006 - Kongsberg
+0605 - Ringerike	
+3007 - Ringerike
+0612 - Hole	
+3038 - Hole
+0615 - Flå	
+3039 - Flå
+0616 - Nes	
+3040 - Nesbyen
+0617 - Gol	
+3041 - Gol
+0618 - Hemsedal	
+3042 - Hemsedal
+0619 - Ål	
+3043 - Ål
+0620 - Hol	
+3044 - Hol
+0621 - Sigdal	
+3045 - Sigdal
+0622 - Krødsherad	
+3046 - Krødsherad
+0623 - Modum	
+3047 - Modum
+0624 - Øvre Eiker	
+3048 - Øvre Eiker
+0625 - Nedre Eiker	
+3005 - Drammen
+0626 - Lier	
+3049 - Lier
+0627 - Røyken	
+3025 - Asker
+0628 - Hurum	
+3025 - Asker
+0631 - Flesberg	
+3050 - Flesberg
+0632 - Rollag	
+3051 - Rollag
+0633 - Nore og Uvdal	
+3052 - Nore og Uvdal
+0701 - Horten	
+3801 - Horten
+0704 - Tønsberg	
+3803 - Tønsberg
+0710 - Sandefjord	
+3804 - Sandefjord
+0711 - Svelvik	
+3005 - Drammen
+0712 - Larvik	
+3805 - Larvik
+0713 - Sande	
+3802 - Holmestrand
+0715 - Holmestrand	
+3802 - Holmestrand
+0716 - Re	
+3803 - Tønsberg
+0729 - Færder	
+3811 - Færder
+0805 - Porsgrunn	
+3806 - Porsgrunn
+0806 - Skien	
+3807 - Skien
+0807 - Notodden	
+3808 - Notodden
+0811 - Siljan	
+3812 - Siljan
+0814 - Bamble	
+3813 - Bamble
+0815 - Kragerø	
+3814 - Kragerø
+0817 - Drangedal	
+3815 - Drangedal
+0819 - Nome	
+3816 - Nome
+0821 - Bø	
+3817 - Midt-Telemark
+0822 - Sauherad	
+3817 - Midt-Telemark
+0826 - Tinn	
+3818 - Tinn
+0827 - Hjartdal	
+3819 - Hjartdal
+0828 - Seljord	
+3820 - Seljord
+0829 - Kviteseid	
+3821 - Kviteseid
+0830 - Nissedal	
+3822 - Nissedal
+0831 - Fyresdal	
+3823 - Fyresdal
+0833 - Tokke	
+3824 - Tokke
+0834 - Vinje	
+3825 - Vinje
+0901 - Risør	
+4201 - Risør
+0904 - Grimstad	
+4202 - Grimstad
+0906 - Arendal	
+4203 - Arendal
+0911 - Gjerstad	
+4211 - Gjerstad
+0912 - Vegårshei	
+4212 - Vegårshei
+0914 - Tvedestrand	
+4213 - Tvedestrand
+0919 - Froland	
+4214 - Froland
+0926 - Lillesand	
+4215 - Lillesand
+0928 - Birkenes	
+4216 - Birkenes
+0929 - Åmli	
+4217 - Åmli
+0935 - Iveland	
+4218 - Iveland
+0937 - Evje og Hornnes	
+4219 - Evje og Hornnes
+0938 - Bygland	
+4220 - Bygland
+0940 - Valle	
+4221 - Valle
+0941 - Bykle	
+4222 - Bykle
+1001 - Kristiansand	
+4204 - Kristiansand
+1002 - Mandal	
+4205 - Lindesnes
+1003 - Farsund	
+4206 - Farsund
+1004 - Flekkefjord	
+4207 - Flekkefjord
+1014 - Vennesla	
+4223 - Vennesla
+1017 - Songdalen	
+4204 - Kristiansand
+1018 - Søgne	
+4204 - Kristiansand
+1021 - Marnardal	
+4205 - Lindesnes
+1026 - Åseral	
+4224 - Åseral
+1027 - Audnedal	
+4225 - Lyngdal
+1029 - Lindesnes	
+4205 - Lindesnes
+1032 - Lyngdal	
+4225 - Lyngdal
+1034 - Hægebostad	
+4226 - Hægebostad
+1037 - Kvinesdal	
+4227 - Kvinesdal
+1046 - Sirdal	
+4228 - Sirdal
+1102 - Sandnes	
+1108 - Sandnes
+1129 - Forsand	
+1108 - Sandnes
+1141 - Finnøy	
+1103 - Stavanger
+1142 - Rennesøy	
+1103 - Stavanger
+1201 - Bergen	
+4601 - Bergen
+1211 - Etne	
+4611 - Etne
+1216 - Sveio	
+4612 - Sveio
+1219 - Bømlo	
+4613 - Bømlo
+1221 - Stord	
+4614 - Stord
+1222 - Fitjar	
+4615 - Fitjar
+1223 - Tysnes	
+4616 - Tysnes
+1224 - Kvinnherad	
+4617 - Kvinnherad
+1227 - Jondal	
+4618 - Ullensvang
+1228 - Odda	
+4618 - Ullensvang
+1231 - Ullensvang	
+4618 - Ullensvang
+1232 - Eidfjord	
+4619 - Eidfjord
+1233 - Ulvik	
+4620 - Ulvik
+1234 - Granvin	
+4621 - Voss
+1235 - Voss	
+4621 - Voss
+1238 - Kvam	
+4622 - Kvam
+1241 - Fusa	
+4624 - Bjørnafjorden
+1242 - Samnanger	
+4623 - Samnanger
+1243 - Os	
+4624 - Bjørnafjorden
+1244 - Austevoll	
+4625 - Austevoll
+1245 - Sund	
+4626 - Øygarden
+1246 - Fjell	
+4626 - Øygarden
+1247 - Askøy	
+4627 - Askøy
+1251 - Vaksdal	
+4628 - Vaksdal
+1252 - Modalen	
+4629 - Modalen
+1253 - Osterøy	
+4630 - Osterøy
+1256 - Meland	
+4631 - Alver
+1259 - Øygarden	
+4626 - Øygarden
+1260 - Radøy	
+4631 - Alver
+1263 - Lindås	
+4631 - Alver
+1264 - Austrheim	
+4632 - Austrheim
+1265 - Fedje	
+4633 - Fedje
+1266 - Masfjorden	
+4634 - Masfjorden
+1401 - Flora	
+4602 - Kinn
+1411 - Gulen	
+4635 - Gulen
+1412 - Solund	
+4636 - Solund
+1413 - Hyllestad	
+4637 - Hyllestad
+1416 - Høyanger	
+4638 - Høyanger
+1417 - Vik	
+4639 - Vik
+1418 - Balestrand	
+4640 - Sogndal
+1419 - Leikanger	
+4640 - Sogndal
+1420 - Sogndal	
+4640 - Sogndal
+1421 - Aurland	
+4641 - Aurland
+1422 - Lærdal	
+4642 - Lærdal
+1424 - Årdal	
+4643 - Årdal
+1426 - Luster	
+4644 - Luster
+1428 - Askvoll	
+4645 - Askvoll
+1429 - Fjaler	
+4646 - Fjaler
+1430 - Gaular	
+4647 - Sunnfjord
+1431 - Jølster	
+4647 - Sunnfjord
+1432 - Førde	
+4647 - Sunnfjord
+1433 - Naustdal	
+4647 - Sunnfjord
+1438 - Bremanger	
+4648 - Bremanger
+1439 - Vågsøy	
+4602 - Kinn
+1441 - Selje	
+4649 - Stad
+1443 - Eid	
+4649 - Stad
+1444 - Hornindal	
+1577 - Volda
+1445 - Gloppen	
+4650 - Gloppen
+1449 - Stryn	
+4651 - Stryn
+1502 - Molde	
+1506 - Molde
+1504 - Ålesund	
+1507 - Ålesund
+1519 - Volda	
+1577 - Volda
+1523 - Ørskog	
+1507 - Ålesund
+1524 - Norddal	
+1578 - Fjord
+1526 - Stordal	
+1578 - Fjord
+1529 - Skodje	
+1507 - Ålesund
+1534 - Haram	
+1507 - Ålesund
+1543 - Nesset	
+1506 - Molde
+1545 - Midsund	
+1506 - Molde
+1546 - Sandøy	
+1507 - Ålesund
+1548 - Fræna	
+1579 - Hustadvika
+1551 - Eide	
+1579 - Hustadvika
+1571 - Halsa	
+5055 - Heim
+1805 - Narvik	
+1806 - Narvik
+1849 - Hamarøy - Hábmer	
+1875 - Hamarøy
+1850 - Divtasvuodna - Tysfjord	
+1806 - Narvik
+1852 - Tjeldsund	
+5412 - Tjeldsund
+1854 - Ballangen	
+1806 - Narvik
+1902 - Tromsø	
+5401 - Tromsø
+1903 - Harstad - Hárstták	
+5402 - Harstad
+1911 - Kvæfjord	
+5411 - Kvæfjord
+1913 - Skånland	
+5412 - Tjeldsund
+1917 - Ibestad	
+5413 - Ibestad
+1919 - Gratangen	
+5414 - Gratangen
+1920 - Loabák - Lavangen	
+5415 - Loabák - Lavangen
+1922 - Bardu	
+5416 - Bardu
+1923 - Salangen	
+5417 - Salangen
+1924 - Målselv	
+5418 - Målselv
+1925 - Sørreisa	
+5419 - Sørreisa
+1926 - Dyrøy	
+5420 - Dyrøy
+1927 - Tranøy	
+5421 - Senja
+1928 - Torsken	
+5421 - Senja
+1929 - Berg	
+5421 - Senja
+1931 - Lenvik	
+5421 - Senja
+1933 - Balsfjord	
+5422 - Balsfjord
+1936 - Karlsøy	
+5423 - Karlsøy
+1938 - Lyngen	
+5424 - Lyngen
+1939 - Storfjord - Omasvuotna - Omasvuono	
+5425 - Storfjord - Omasvuotna - Omasvuono
+1940 - Gáivuotna - Kåfjord - Kaivuono	
+5426 - Gáivuotna - Kåfjord - Kaivuono
+1941 - Skjervøy	
+5427 - Skjervøy
+1942 - Nordreisa - Ráisa - Raisi	
+5428 - Nordreisa
+1943 - Kvænangen	
+5429 - Kvænangen
+2002 - Vardø	
+5404 - Vardø
+2003 - Vadsø	
+5405 - Vadsø
+2004 - Hammerfest	
+5406 - Hammerfest
+2011 - Guovdageaidnu - Kautokeino	
+5430 - Guovdageaidnu-Kautokeino
+2012 - Alta	
+5403 - Alta
+2014 - Loppa	
+5432 - Loppa
+2015 - Hasvik	
+5433 - Hasvik
+2017 - Kvalsund	
+5406 - Hammerfest
+2018 - Måsøy	
+5434 - Måsøy
+2019 - Nordkapp	
+5435 - Nordkapp
+2020 - Porsanger - Porsángu - Porsanki	
+5436 - Porsanger - Porsáŋgu - Porsanki 
+2021 - Kárášjohka - Karasjok	
+5437 - Kárášjohka-Karasjok
+2022 - Lebesby	
+5438 - Lebesby
+2023 - Gamvik	
+5439 - Gamvik
+2024 - Berlevåg	
+5440 - Berlevåg
+2025 - Deatnu - Tana	
+5441 - Deatnu-Tana
+2027 - Unjárga - Nesseby	
+5442 - Unjárga-Nesseby
+2028 - Båtsfjord	
+5443 - Båtsfjord
+2030 - Sør-Varanger	
+5444 - Sør-Varanger
+5004 - Steinkjer	
+5006 - Steinkjer
+5005 - Namsos	
+5007 - Namsos
+5011 - Hemne	
+5055 - Heim
+5012 - Snillfjord	
+5055 - Heim
+5013 - Hitra	
+5056 - Hitra
+5015 - Ørland	
+5057 - Ørland
+5016 - Agdenes	
+5059 - Orkland
+5017 - Bjugn	
+5057 - Ørland
+5018 - Åfjord	
+5058 - Åfjord
+5019 - Roan	
+5058 - Åfjord
+5023 - Meldal	
+5059 - Orkland
+5024 - Orkdal	
+5059 - Orkland
+5030 - Klæbu	
+5001 - Trondheim
+5039 - Verran	
+5006 - Steinkjer
+5040 - Namdalseid	
+5007 - Namsos
+5048 - Fosnes	
+5007 - Namsos
+5050 - Vikna	
+5060 - Nærøysund
+5051 - Nærøy	
+5060 - Nærøysund
\ No newline at end of file
diff --git a/data/regref_fylke.rda b/data/regref_fylke.rda
new file mode 100644
index 0000000000000000000000000000000000000000..f72068a71e885eae9c7d29c8fcbfbdc2f8fc0f92
GIT binary patch
literal 637
zcmZ>Y%CIzaj8qGb+~cgL%fLM4|KI=L&M-JJ*FP{#p6{^#|Gfnc3=9qm3=9q&3=Av`
zj0c$Z+%{w|F<KVvzKECM0t4d$1_n0A1u9-y{#o-Tu&-QTVjsc)0_>7TnahNg6%yRk
zdIVdfOb#$K2Duul%}TZP51gRBa@oZt$2^}JN}8Bl+$gEqE5&5;YFo&}b>Akr|8!aY
z*!0iS&B~0y>o>0snJD+`kGX!4%6tFGkAlrV`lczTDso4fCM{aF=xWsI*c{!dGgb#5
z^z{uloUUfsawU?(XzGnfp94H?0-*;N-(J1xfVb~;VH;5ihx3dL0&z@jHN{U2=W+k|
z_I+i@otath5BY1VXm~7IqI~#xCa1KPhda-Tz(7|nt)S$jcS-sin0&czi??Vb_3Tky
zCed2nIwd6hqtDbO4rfBP<OaIEYFcuvl{rLWfi_!*!;Hg6T0PaP9!)GbC*cq>IfCnD
znWL)G#msrHwnX|XE$s=}S($R+%g)JdRZIQ*R~7TeJn0LbIdN9uob5(EY1(mNljnO^
zEMxVWvno;l-6NTF^_R&nUwnRGafWMNy;GXg=LOTY>AqL&Nz@8?K20n=L(}y03|^&~
zA5721M)(}v8X6i}qk1v%Q}2sYF+oW`7kw^H`2O;l)WwFy53Ibs-_BD1WH!fa?xviV
zvp3tE$+YXec<V;?v_rn%-40GE&6{>-N>Zwt#>UD`xz_V!n%9J+^ncw_&YSkjl5gfu
zK8`)5vidTQrWt(j+*j(yxOMl8X%@E1i)-el&$9fY+FEdZ#-FF^SqfX2xu;A&#kq;;
xpu_sRSDLgK9tfO%{;*)Xb@q|D6Xn;uo5e1?;rElJ^^e|pEawsu??^qm001&GAB6w_

literal 0
HcmV?d00001

diff --git a/data/regref_kommune.rda b/data/regref_kommune.rda
new file mode 100644
index 0000000000000000000000000000000000000000..9f0de68a9d17baed66c1881879da631583d81632
GIT binary patch
literal 7770
zcmZ>Y%CIzaj8qGb3{}=)Wq7=z{?GsacP2O_*FP}-f8SyM|N9G^7#JLs8CV=R7#J8I
zn9J3ADSl&MYhZNvpl#~F$`BH=l3`r}15*P7>jnm92c`x_2UZ5gNG6sQ3?U8IRxpT$
zF!(kwFfgz+H85x}Fo-aK0JF?x!HJW7W-(5<IN{_31_mRO6Bi8H9IjkBYik>-!N70<
zq=<omf$^-Nq@>Bo1(LjyJTn;>n3a8cnK@E8)n<iUbrS@c3Q?!FQjwvFiSwnwjHax*
zr8dD|CZARL8}QZEO-=np)~reaktGU2i)JxMnJ_Rg@CPt3@G{6(<;MPQeg5Xsl$R3&
zRsZX_M%Eu%KVN%OK7YUci~sw7ep>tFr2qS)n!l9Sedkzde_L1l_tKU18}{EnYJXn;
ztM{$?)Boh2yqa_UqhIFvs;s%mt8!*6|I>Z4R98IpWLErU-RVJZcE5`@mPlS%66?L_
zuKz#pNmuqq#rA!9Hp{PbvQes))#AA(^Pf(+6Qe86t@>rxv|0MK`X}>m?2?)$9;@$N
z^ebNMyWY}U(R!2b^+@X#-+2|kR`>MDyf|;wn<dNZzTEXYdC&i||6||BR#~$@Uh)&(
zRpGC-^O?G(_3P=r!YQxjsGZ#RtKP2ii=Xngo4&KvcZGgB>c3uP*_Ai*e(kz>Cidmy
zy=K!@KKp-J9`Z!&fUwj5dWY={yB_Rj*sZWeJV#tYnDr+2@1qYZ;#cg^6<@mPW<~7u
z)SG3o)0h70KJ>6)uU_|}7kl-+FMR<K*IPeUMZ}47Z+f#&@ARTCyY)_Qdb3Brd()fU
zdZ!<jMMT7lw|=aOn+_(99=cc)FTV6*MVxr*&9Zp0)2@pyCRW6YFa1~pQdSc$e)MBa
zoOtWQOq02L`fGbrd*ju8P2TMBN#4C*Qfm5+ayj*tk8-zr9&fz~QhVrTRgB*0O%E$#
z#h2c!i5KhUK6J4vTJLo0!;F3U-Kig|^t~Vbh@GB#u_ju-`_P+hF?zrCx8AH;SAM4^
zxaGy%;7!H8mrI`e?OA!!YI)EfeeX-pRZrG=pDY*W*EZFCt$Ur@_0WesdZ!=#*ah<O
zJ`e$7ec1!@<BquLM>l=htJi(7B3A75r62qByAOTXr_T-c_@*zr^txL&eb}cbp6%W3
zeQ))?@Av1vzt8<Xb!DaA(vwxO(~sV)eVE?b`n>hcKHVR2-iy9$iJKnuWpC`Gk0ra;
zJ^iwGy5`O&S1au<^Tb5UrR_TVI(E76mP@%de(J(k9u=C+RTn<;)z0s7=aQE;{=%L|
zKAO$;5AM8FHeX$P)vvd<>t>%xJneZa*Uo?Pl8;t?lb3vpJKkd)cxTUp@7g5~&3z}A
zyqI&j<=Gr{&a1JfS61phy|a6I(Ytu>n>97xC2Xe`y^B4)>0P{d>!*FwCw+?dp7dnj
zbk#3=<Yq~kq+hz3Qyn?8B3`^sy!B$vZvE~<KlbW(A9}GPu2jE!)8|KDHf-3fU!^B@
z`q7(x`rY;3hd%7{x-xaCc2L-owd=}rpRNtB-22wh{ODKPP^+Z4WX1(wxY!sN*gE&D
zh>H7OWn;#`z_>ItG%TxO+3nm3u8%%)gdd1!F3(-lz}S;yn4>Ig<#U3uXNTYC_Sr30
zLn9U%Tu@^$)KJ<O8k$wYFg4vPTQF^5TGFI!u1_nSPKj#hL^w@bb+lV-ihlpPJ=Lkx
z*3Yxsy}h)&=<R2lnxC_e>#bR)uDP<ZX}yQOn_))eS<#*))-RVBMVCK4pH=kh^5ZY_
zS-uC~nH}u8a<A>lPyVyBh4bu6epz0w%D-xvX|gQ1S6$^|R`li8P5<|7i(h}TTHi)5
zKkl#2?%=ADht{X{zNfsJ8$7A#so%+^S<}Q*f9mL+-gK_}>(i6vdW)m(8d`Q|<;>N*
zYG|#luJX`kvhXq;%ah-hwN@-oxl(ugt?#;>R_ZQK<_QaXc6Q#IF;94_rTQ};Ka~eN
zT}!5^tFN{2Rp-2Dv-0)1xtFW*{WOdE>g=9ewNV%O*!j@V%*Ute#kwyqJ0Dtky_tJi
z_^{8KU6-fdobu4n(9ExM-OKYOx8~=!-1Li>v+}H^TKJ1&`X-O&SqCpFiqkrJ*4$6^
zP|>$w;rsXI+7_35np`_M<*Lof)!ROmEz4PU<->B$&i!jGmQ9|O>o4>x_H@3X&5A3V
zV!SV%Or0j9KG)1|<@@D+!X?k<3E%ds(|l;*<CnQ-#++}<dsaT07c+UT@v2M<-^r7b
z=3G|VwTw^r)QowVOWw`v{NShh<fhH!RpoxagAbLh4L)jd*X;dG%jN1iw`QyD@J*_*
zUOuZ}_C4WE<$hD1%~^dYKTUmA_EO{8S2wNS?@CIyGn|n+>t#{3u;)|1&O_z?S*5`_
zFFRj`XT0~<{W3SW<jafsn?J|T=ie-KII?z$r}p0|0gIWG4hz;R|EgLlB7Rztvu>$T
zo0`%lpB1V`5mSAF6@0vvRvWe&`gn6D>P$)L@k;7xZEZ-|s533dC{l3Bi6cjj9E_Oh
zGg;ukrbr#l&ZHjKnSl){8@V+nMjC{vsYcAuS>~pu+1WYeNYV_SWud_$i8`x{bR-!k
z9oaNZ%{A4?XR@%cuwcZDh-HkE4n=A+oJ@+;X`FOoQ)J+zlRDEFTf0_kPD)BK^zrPR
za4^zMSeY$Y<w#P>Of}b(jXXY6BW8rDsTpbO`1trtRy8y<G?+1CMp9a$L71~vSG|m8
z_={5k_f>1IAM`K&d|9#j^6$w(2`7zas!eA8exHAKs9xs>A0HpT!0RbDt^S%#uK)G(
z^2cStnp6I0PWiE>XIr%H>7c)#qIAW)gN|I;w)FGqluMcB{?}$-u1a{g&UEW-gOws%
zlU1~M8s;tVXL=*bw5hRafp1g7+@8#yoaD?o6<kcM59<wf=`Fok5x3lVedV8fzh6AA
z{BHHUzWTZGd7J0+D&K!_da>*4+KH`ux7<|wb~~|7tb6jb?x-}gXx+EVPIFghMqTzl
zbg@qS<jaZ}-Q`D**2VoeS@Y@g;!78cr|su7*uFc-Ec$k;?zC?gv#uVx9M+w>_m*zf
z&Ft`pWihL>KiadaUVr*t`rF4tzoPGc%nnOkbZyOPqqAabQ)gVP6MtA0-+Hl5b7kt+
z<<IY${So`H+B{=&)E3XRQMy@wbhFNEmYml8VXy9L)!S#TZ<~Gl+`Q>Nx^EXmX1hjh
zoz}H==|V|=?@!kHhwkjmeZT9s@5^KNCNATO6<hY}e)KL?>*Cz5xMf0fraf)Fn3z}-
zt<TNfdgx|i!HzjPi8<S%b*FQ?9y*z_CGMPLWaJ#3hb6J%t{1^X>B+n(ef4Ky74y_H
zr(Q~Zk{6M)d%AP$!;&bygKkf*wxy+|N!%_;I;|+&&91qlXHvOb>!Mdt%G^w+HuQ>#
zaXXd7PIvuSC$9N(zIf4F>*=X)cHQ24``6Mh+oDugrm%SnMu{!m^ktuZfA`9g82_cq
zC!MW5XEpuk(yXY7i>_=@c5O1)sw<SSA+&X6Vq(EQ{q9R2ZKof7Z~i={_-1BjV#<a-
z@ujaS;-<Ua+5Ikd`CMn4*Z1PZm$uA^2uaznTFWAK`qG<KRngPDAAZ?=e_r87{iQ8o
zJ}Mg?R>g{6HH(|B`eyIFo%dxv*m|w&PJLJwC*FGK$&Pu;k6zjJ_IXXQ+{N&tn;uqQ
z%-J%}yXfAYSC8i@F4Jgly;!hM@AQo?`}9>GR>X;CUaZxtyuYXT;WCx}U%PatKdfuI
zn6V91&mVeNux)m(VQcH6n~7P`)491@7yV^D^sr!;&h!^^{M0T#d1>PhuH1M(Y+m$Y
zhmUB}2H(pk_1^PD_RWl}3}^{7np<lf9P-q!<i)zoz2?48@7e@!cwG1O^tvs7Re$-2
z@psR;mag=$C7D|y;@Q$=o~Er+j}`3E@4ob7x8Bl=WwGjyN_D?q_lq%#oi<D7(6ud*
zt&6U8OGN1=R>bHFA9}J!@AQ%<`?+rx*Os215!re(o7-SBx2{-X#@0n=#k#p&H+{6y
z_YQqosrUE&Im@Om5fI=eCMI@T_0Yqr82{jtRk77N_vh~TBJR5BTio(VU-qot`|I=c
zrO|rbtryE;r*mI=vLmK=-`jf}Hw$*ePItYsOHW<(X8E1X>$aCg>xs8steQ7{>7Ctr
zPfr%?oo;jWX3lPXe(pnW_UfJ9^lq2l&Ub68;>2I-iJeZ}^e|^jw60orXUb;RMGvcD
zr>7ozShibNJm{;n-{m8ZD&~c~7q*^Wbg?97!;2lUVy9E5su-)KbUAK3bJ27)k7RdP
zSaOdj(~q6H;w!JN&5ZAy^w=wQI`^iFWpSrJ?7d&MR-8L^(~BK3(}j1Io_%%Q^<u#;
z{nSG*cFdXH`rLALteAM~&4NACT@SsrnjZT;Y;VYiJ^J237pwJ!Z&tp`4^O>Wuv>5P
zN1N$O-`AGrec7v95<9K?Wd7N^(^C(9*`qt{^p>x-(_P=kW?et<VT*q1t7`q!=W#FB
z=yN~%BPJ%!-FoQIqdB@_-Q3)+lkRNQ^L}|woV)dA&X(Bl)H^$3r;APYyi_(<T{!d3
zR=uSw-t3!R>&28XL$j>=Y<T&MC7C;JPT0(ml&$kT<~jGJueSb6H+|l>)_lMB{mN@8
z(YKAxb-NyVu}@EY)5FUB#hbq0>rP$vC30EL=G56YbGGlDcDnjz&i0)dd-W$je)ReN
z*8D1c?)UpOH{CmX>~!_5g6;dnvQuY7>t<|UD|R|cS8Tifp*LINJ6~3w-<r*R={vVc
zly2psYulnOn?$zGh}O+d-E{Bi%BooL%vY6bwm+Y(&s}}yVs@0yp{uR4biEI~*cLzO
z{h2*8;=B*N+5Wt0ztAqdrTcc7=4_d-e(8D4<(oO%FO}-;JRAD3CQeLDtebn$!;Eba
z85?$rtG2dYOf1@|*S)e}XWZw`TbX8a^q%f4)q8qpfq*DekC@o$lch47-sH8tdOB_4
z>FK%mmT$Uld--M3rXKxn*Q7%mHtB?Eo#t^rdfxlWmp$L54t<Jn^X67<opk7AVq!(q
zwwNnBb;O)NoPs^RcfGAnuS`tY5Glqj_+&@SQ@J%dJvu&m-QKQ~xdS#|Io4Gbr>C!a
zJyg&8%99-rbrNspMX!GJuwY9>M3jz>uGr&HgDnve`rSb%b2jYJ=T5y?niZwjz4WT>
z>La&~d_GyJd%9+N(Zhm(%J8Lk?@SF^>B$@DD#n|+uu4nl3b$vq?v5khy^g8Qi1JNJ
zcAXK~y5w57j?P<?Xx|rGW@T)dbumqBvaeWTDo9**deKWOzmmwrOw&b|vV{$eg(YUZ
z*fHC8jn5jNZP9*Dw{sqPH)ooeTCiuz&8iq(v89VHW^B<FZ(VdTXG@f>nCs1)ovrWI
zPA~d4w|JJ{<t3N0;=GIA#pro+a~tpbzW4jtqI21nhtE8o9vhSSczx=o%fg&fK~-<A
zp^nee&KWZ$X3y$X6V^=Hv{k3M=s;93_og=+Hh>Hk6YF-J(bny{Zbr23v~JgV277du
zsSA59xw2jNbkVnH-RVpTi_32B4JcWXHf^Eku|%gNS2eM2pNx%b#SFIU8bwYzE0%C6
zTiDcR%gj}2lTCe2Wtt|Xsb$UbS*8{&tQj%W$494W{-lFtF}h;ipzc|r$(3YoZf@2|
zhu+1`*3r?O?t19#w9~HdH?J+38}51JWXkU8+^r|GV(xukn_u>QZ|+%($2s>cA7)5^
z$}urvZY6^apmNPkOpIIPR8q-SU)4;bBX8#Knty4Q|GD`)C+4elb}sq1D`$Sl9Mwbh
zImMGb|J};;>pW{{87!P~<i)hfRrR?O3ufl3n_MdP%lxj{`QQJ|@^7E~k{1<Co@;e^
z*Bmu<&TlK9%|5xSV3uFzvsu3Cp*7LEOShKmFa4?Oo%&|?^vB%dt#@|pnjZAWd#Q}R
z>d~FyCYLJJO)eFxalM&yx#ZT|rB}A=d8@vP6npw;OZ4=NBY$6>wQqOVDwr#*aw*eF
z?aC`X;X~`X%KfxTmRo!7D)#eyWacM)s7$-_)i&SBOO57E7EXCG_ub1=bAwkE`zx(g
zTY1vlFSBz~Ql@=V&iws*=BC`VUT$iowsf!ca?V{jb0<$qX4k4*Zt`SKYre#cIqD@h
zmaSZJWx30}d8f~s%+<JS<*w|xt9aRA;YC^I%d^UYr@P#>zI=JE+2l<new#{`y?mKB
zd-<fiIl<LOcAdO5H+ZShocU*#eJb%|t*U3Y%9(j6)8_J=n9Gau{XCakSvR@p&8DdC
zq9?obyeHkvt=l?v#w<VKQtPE#W~-gtYb)&ZWW%S$s*7%B#Y_))rK2x&WslDE)@ohv
zMeib_^P+k$b1tn^ceyuv*~=w2Eqo_yZpx3D+;VHSI#-pt$t{1EXS4h?U*4Np<|i!N
z@hEo5Tfd^D*~dPm8kYJAd!9A4@MEtsnWO$;`R{Fho>vV`=BTH<ntQqBuDRdJL;0d7
zZPX`Ks!yt1zJIT^YRh}s$$JgWPR*-(uk!ryvyPZ8deci67Ejo9BIXG9g4S<NOG*MZ
zHJaM5wO?p5=dv)*GVi*Rm*%K{E1G`Y_1Ds!)w*Az<}Zq`ni2P1uPr#oPk4Xs%g(dM
zULMN*VX4*?v*=VrgtoovznyhwcD&g=dHJP}7JirV=AX1&?(%G|Xy9d`RHG^TPg<)j
z+OzWS%lYq@{|(l>Y8gD$%rE5G{G%pwGf(*m|H<4w<KRt;zRsto`hTgb{J%Hv$rm5r
zl_%{dRcp<5Q~wienpFKNX_n6{-(b(xfomt{s+~Mkt@%jo<)plMPrmgx<;)4bHDmU&
zm-9_c_otky<=pq>p<Pvpulr8>A6mEOUe-KRzI?0I@<Veb|CxMh-p%Uc=jN!ZJP&>6
zx3zTgNweiUExrC}p0wZlreAB_$&0p~udmvho!nHLxvRo|Ql_c@r1@So!Je<?m3&*i
zsOIsmT1y}Qtc11dKbC#pY3}>vtN-s{*O=gvGk?DPjlVZ{@+<#dlUcq-ZcAq!{PlFn
zw!BDPjZ2ZMGLkY)@Aj(QI+c<&%g5Vu(v$5gK{6+^+zqztwCODN+_t#nw&$j#w3mC$
ze8rxwiqiG<=FL=FWvTyV+SktYi)Kx&@V)%dck+aKm0wRj`*|Ljb6NAGx&NkzCbQL7
zCFMoTUMA_!d8o*5<)N%OlQnnMzPxC*CwR*&KhMs+mdn1pUs-!{%1uMF<y$S)_sw5^
zYR<|dbJVxZ+co{q*C~%?N2_z*o9$fkd0C8_+GL&gzP_jK8dUiB*QZ>mKWiP_@@(dZ
z<$|YtSMJ?%<YdGwAK#Vl{W6!_o9VZ)b63JcE4AxZIkR2QnlJlQwcO-~cIuP)3$3m`
z_gA?$=kk=T=VB(OUyIc|RJ<}fb!WMbo|yNfE4$>?BlW~vzwEZ1KArRRwxw^j>euXI
znRJn>MO<qY0_@a?Qnad>yk&N9YWhXBlbxT{PSw2py8Q09;6s&{t+g(t)^To`G4pG%
z=NsSU_vUw1UQRjk**_|0o@JWm%$?TDXBGJcC6)S2cljgyars`$Whb}V3I57eJC!TC
ztH@{B%d1w8(kIQCEd0<vE8kb$XR_zzl3#yb9?E?>amn+n*_S6(PhRxU!uRE-s^un^
zGEL^#EqQv?xY9y*+odAEeV$*`CU=%yN;R#z_VR<za+7B>Y_A-7?Xx`O#hZDWkE>D*
zZL+Q;&6qLYDsAPqUpM_qp53(FxGQgNaBc97*(<mEy8RB;ZwcRMo6gxD@~QvId{e{F
zq%uFxLpk#@&&}4lYvHSY)Xd-I%XDF3@5gF6<$GIxzHE$`$@O*eS+jTZzC5&6-)pUQ
z@}!B8_SfTkt<^bi+NOLAy=bv)+hiY~Dm8blT9fZ9&)No`v{L`%@A7JX%Fe(0Zag&k
z@Aq<7QtiuME03K#RJ#1d>QyDa>YBFM%T_PSFI(q1|M{VcWq*YOm#kF_4mq=Ia>(z?
zoU2cJPI)mWWT)ptLkr)@Ex(SN{F*HMGx)Ku`l3YN%fgFNggx)tsJj}?UGXRL@l`9&
zt%f!$J3DvHm^<0?s-^nok|VEuC(kPNd++iq^H!#z?b3+g|3}s?Icj$*DdC}ArQMe&
zbJQ;_`c)XLIW;=?s@YwiWs}d^t2~=4_|mUsckq|xF7JIWZ;G#~)4Vj-^Q4)-%lBm`
zx6GZqsI>poO$+}`vrj&mxAMho^;s$NR^E%Rs^;1<ck-q>%_R@5)wk{NPpT0<8Y|p#
zZ{Ag_<!efoKbUj*tnI|ko2F4dKK?=lnnfqx%(xcx)bHh4tJ8<_OZ{hA_@9|~cBP@w
z^b0dxv%agXzckZ7t46r1TJuY(uGrG{a@U>Jdg33t_p9!z^;}i%J2_hI%WcoKsg}!K
z&6cUJNwM(TSmCRl^6JQ4tINW(ikG{Dzxng>qSf+W%hW^O>t#MPw7NVu%J=f5BL7~K
zsW~%do$^0uD7q?X`l6&vqoB{zynih1ke(Kp7s0l4ihY>pyv$8`b61`;PWdJL%->J*
zx!kQiFSmYQHn}Q4CVNwM$@k@1mCL8vUq5N7?zMW#9M7$0GLvu3c02iM&g7eSP38tq
zz35-{W|m*(ss4?ozEe)6MXQ?}xi#basxQ95hsyk~&6l(n`RaRV$C6hwX8Nj4_S{sz
zR$|_hgL@Apt=k^*^YW8<C2xZ-8d|Bp^5^^#TvfH~<&ux;DmU%DsyvrXUiRh5tmP@+
zgG;{pt-SYrxzDm+%c6YL)K;#_nw>I7?Pc@l7vWlkdY)@1-<o$*H!AdlpXZk8Qoic0
z#=>{~ggy6~FJ4sSH(ULn?aF_e7j0H{##_~_Truae)v}PS{?n^+-Dl;^e(T?rlxY-p
zsbH3Ck>ATD4-I97mCBy`hHSK3dT+j0mD<ZyCH^XJ?7sZE{H@;I<kg(+SN*rRl~t!~
zW@c8MbW|cWEyBk~bgGVz@D+W|*Zv{*W?v3pRi&o(s%C0uy=P3@<T)w1cADK)xqiai
zcUJg)`Lyh6k^f4Y$uF0^T=Ln!rP%j!X12vci<?HimqV_a`}oEQcj~*mc0Xq7tM+ng
zXlLi9OjBWDt<{^de4iY7XjfGkyfklqP)br=Rn}J@|DsF_A3x6}?`Hb0Zng07ugaUl
zdwf#P?4W~he3nglH&5iMU3kb%lX<t2>UPzws=M<2@~-p;^QPRj_la4$W%<8JiMA(S
z*w6F3Sa;;b?By<hHJ3b_e^&eN#0N!woj-!AmcN!hysFOgr~3NF`13yMB7Zj(`FB+Z
zYrdNp<um1#cF3uW6kqixbFX~A7xF*ScFLVS>gVM$=Pci8H1mCr@8wMyzl7J!^ZcuM
z`m_3%Mf<k=y8OZaRj}}++LdpXtIXeOH0R}{U}27ZUrt;~4VyeGVg0K4R=K_<eoFg1
zJI~EeU+_El)ZCR}lT#j=`sbR=@;^3DYt^31Rb}(LlB(3dsP#_1XffR?XGZL_t80!{
zY*H_}70dtJ+bGiipsnu8C8zcZtDN%7T>8oX+5cz$-`-lQAGKCD`OEp!^VR&Vw#g@L
zSMJJHx@rGr*5s>(R?CmtO<HfYeyX+FWIxYU`#66uPPq|w^3hc@f3E73U%@IT-p!eu
z@=xaST+2IZu5~G=%9dvwc`|2e(vg$qE3aB!e(5JX*H-w2U)TDgf_YcI_!s5O@{h{2
zJ-OAQM!2xtZ_1UAKG&Q*Z<<UGxpn<<%U886GiJ>E<jcJ%W$B0I`(`cIS*~)*+`ni3
zhI=uSz31Al{I2=s@~X@wXVnkQUUu=j+Q*Xy;U}%t@6DLIa#yLZ`s}lYFXmpJYvEs1
zBYbb(rZV5lCGX~275TeXPu5;)Gx?SJTAM%WB3F%UF1Ng!F=O7!Q}c^*=ABAQsSe(2
z+qtPiZuZ5Ox|fADccnk`@i%#BGVjUFu*t%!G7T-&PNzJy6Zv-Ma>-SbW$KHPYQ1-c
zO&3{x($L&@a%jxT*ZxIC+jC}1-ZfKGJG}Fyzh(NQV!zI3v;0-w`ZpCVZ}~a-p$xO|
zp^`0g)YNOH?04;2rncnZAN$=U4{bYFRrq->Iq^e1<-tbt;LfDVWonbPqChpz{#8DH
zFVEV(Jk@UU(A#syJkO<}OO7w94=PmeEcKsM<ZtqKinaQgIg_9Ihg_LI)o8Z*tgIO`
z=2sQ_Io$F)6%(xRujJh<|HYFE=BR}~nY$v>$kcc8Z{hdLGtD>6Ue5Vrjql`L1@o8s
zGgthYto&%sk{9!YzpJZUHJ|)h&E6@g!hfah)VIF>T8^6e8=LwpTl90~vW<3PSH7ve
zY}&ni%KW0*m4|9Ge+jpI_M22N_wtlVr<%#aniIp+ST?JCUw+khci`WUznQ1zi(JaI
zoAUMBvfx8?NfrK+iv3TT`3Vaj%Fnbv{L>}m|6YgvmwX)M57{Txzgqo!$={Wm@@Dz?
zPV-#y_w^s)Kf*145C6LS$$z8m$sd<r`ux89c{%6*Np(Ng_;p^iTXO${&*bmRuDn|Q
zdikx{%kRt!c{eZf**uY3{yXhnp0%&FxvbB*DQSODQr2AIlxMU2R{jVM`IGtQ<Wu=~
z%ig!_RyTR+<9}t2`Xd{)FLN$mo9DSHx5QVob5oUf$rryZ>zlG>Esv_veDAAvX`9cz
x*})Mr{gaY@Ts>+s%g0Z+<;r}PBYRIi_3`nIZ~wGv|Dtyu%ejQOmZUZ;006L3ivj=u

literal 0
HcmV?d00001

diff --git a/inst/extdata/SSB_t03794_bruttoverdi_fylke2020_1996_2018.json b/inst/extdata/SSB_t03794_bruttoverdi_fylke2020_1996_2018.json
deleted file mode 100644
index 8e7edbd..0000000
--- a/inst/extdata/SSB_t03794_bruttoverdi_fylke2020_1996_2018.json
+++ /dev/null
@@ -1 +0,0 @@
-{"dataset":{"status":{"15":"..","82":"..","85":"..","88":"..","89":"..","90":"..","105":"..","106":"..","110":"..","111":"..","128":"..","129":"..","130":"..","131":"..","132":"..","133":"..","134":"..","135":"..","136":"..","137":"..","151":"..","152":"..","153":"..","154":"..","155":"..","156":"..","157":"..","158":"..","159":"..","160":"..","174":"..","175":"..","176":"..","177":"..","178":"..","179":"..","180":"..","181":"..","182":"..","183":"..","197":"..","198":"..","199":"..","200":"..","201":"..","202":"..","203":"..","204":"..","205":"..","206":"..","220":"..","221":"..","222":"..","223":"..","224":"..","225":"..","226":"..","227":"..","228":"..","229":"..","243":"..","244":"..","245":"..","246":"..","247":"..","248":"..","249":"..","250":"..","251":"..","252":".."},"dimension":{"Region":{"label":"region","category":{"index":{"F-30":0,"F-03":1,"F-34":2,"F-38":3,"F-42":4,"F-11":5,"F-46":6,"F-15":7,"F-50":8,"F-18":9,"F-54":10},"label":{"F-30":"Viken","F-03":"Oslo","F-34":"Innlandet","F-38":"Vestfold og Telemark","F-42":"Agder","F-11":"Rogaland","F-46":"Vestland","F-15":"Møre og Romsdal","F-50":"Trøndelag","F-18":"Nordland","F-54":"Troms og Finnmark"}},"link":{"describedby":[{"extension":{"Region":"urn:ssb:classification:klass:104 urn:ssb:classification:klass:131"}}]}},"ContentsCode":{"label":"statistikkvariabel","category":{"index":{"Bruttoverdi":0},"label":{"Bruttoverdi":"Bruttoverdi"},"unit":{"Bruttoverdi":{"base":"1000 kr","decimals":0}}},"link":{"describedby":[{"extension":{"Bruttoverdi":"urn:ssb:conceptvariable:vardok:1327"}}]}},"Tid":{"label":"år","category":{"index":{"1996":0,"1997":1,"1998":2,"1999":3,"2000":4,"2001":5,"2002":6,"2003":7,"2004":8,"2005":9,"2006":10,"2007":11,"2008":12,"2009":13,"2010":14,"2011":15,"2012":16,"2013":17,"2014":18,"2015":19,"2016":20,"2017":21,"2018":22},"label":{"1996":"1996","1997":"1997","1998":"1998","1999":"1999","2000":"2000","2001":"2001","2002":"2002","2003":"2003","2004":"2004","2005":"2005","2006":"2006","2007":"2007","2008":"2008","2009":"2009","2010":"2010","2011":"2011","2012":"2012","2013":"2013","2014":"2014","2015":"2015","2016":"2016","2017":"2017","2018":"2018"}}},"id":["Region","ContentsCode","Tid"],"size":[11,1,23],"role":{"geo":["Region"],"metric":["ContentsCode"],"time":["Tid"]}},"label":"03794: Bruttoverdi. Avvirkning for salg (1 000 kr), etter region, statistikkvariabel og år","source":"Statistisk sentralbyrå","updated":"2019-08-30T06:00:00Z","value":[688437,731740,651045,677894,603625,659631,624128,595754,663740,749339,636062,808231,761229,529227,833704,null,703196,639206,892052,916385,884125,978716,1202281,18031,16181,11634,14363,10599,10581,13318,9827,10998,9328,6592,9388,9082,12543,9742,10362,11987,11924,15697,12375,14240,6480,22796,1031702,1164366,1074636,1110909,1042701,1093846,971295,910009,1019639,1243145,954002,1353628,1214096,883165,1241378,1333493,1328547,1260879,1464108,1406322,1386140,1530368,1822837,303489,336942,328252,325428,320377,304536,252384,217575,244935,273207,256305,353113,343620,null,317882,317311,null,209153,290411,null,null,null,408620,187554,198136,172644,178957,173353,171428,140135,145697,146225,165228,124163,146415,170487,null,null,192443,170267,161628,null,null,215139,244881,300708,17987,16136,7989,14116,14826,15284,13526,17786,19170,17988,15843,16887,30349,null,null,null,null,null,null,null,null,null,null,58038,41017,30167,41887,38627,41920,38134,39159,46038,42276,26546,37388,44297,null,null,null,null,null,null,null,null,null,null,29994,25276,18971,22320,24511,25556,22524,23599,21794,22965,16862,24157,28387,null,null,null,null,null,null,null,null,null,null,308876,288172,271344,280521,273755,273763,229748,208754,209499,243733,243605,283693,286044,null,null,null,null,null,null,null,null,null,null,36398,41653,33596,51142,50733,65955,50463,46671,51233,45638,37045,44800,46249,null,null,null,null,null,null,null,null,null,null,28722,18157,8145,22520,14694,13082,15178,15651,15537,16066,1379,845,344,null,null,null,null,null,null,null,null,null,null]}}
\ No newline at end of file
diff --git a/man/regnavn.at.ref.yr.Rd b/man/regnavn.at.ref.yr.Rd
new file mode 100644
index 0000000..8f062f2
--- /dev/null
+++ b/man/regnavn.at.ref.yr.Rd
@@ -0,0 +1,24 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/no_regioninndeling.R
+\name{regnavn.at.ref.yr}
+\alias{regnavn.at.ref.yr}
+\title{Region navn og region kode for gitt år}
+\usage{
+regnavn.at.ref.yr(regionstat, ref.yr = year(now()), reg_level = "fylke")
+}
+\arguments{
+\item{reg_level}{is the region level in the regionstat ("fylke"  | kommune")}
+}
+\value{
+tibble having the regional statistics including the regional
+names and codes for the reference year in question
+}
+\description{
+Denne funksjonen tar regionkoder og regionnavn fra en regional statistikk,
+tar inn tabell som viser historiske endringer i regional inndeling av Norge
+og gjør om til riktige koder og navn for et gitt referanseår (ref.yr)
+Funksjonen fungerer for fylkesnivå inkludert landet ELLER for kommunenivå.
+}
+\examples{
+regnavn.at.ref.yr(regionstat = t12750(), ref.yr = 2020 ) \%>\% glimpse()
+}
diff --git a/man/ssb_skog_omsetning.Rd b/man/ssb_skog_omsetning.Rd
deleted file mode 100644
index 60f8206..0000000
--- a/man/ssb_skog_omsetning.Rd
+++ /dev/null
@@ -1,18 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/ssb_skogsavvirkning.R
-\name{ssb_skog_omsetning}
-\alias{ssb_skog_omsetning}
-\title{SSB skogsavvirkning for salg: omsetning}
-\usage{
-ssb_skog_omsetning()
-}
-\value{
-en tibble med pris og volum fordelt på fylker og sortimentgrupper og år.
-}
-\description{
-Denne henter tabellene for prishistorikk t12750 og hogstvolum t03895 og setter dem sammen.
-https://www.ssb.no/statbank/list/skogav
-}
-\examples{
-ssb_skog_omsetning()
-}
diff --git a/man/t03794.Rd b/man/t03794.Rd
new file mode 100644
index 0000000..e0cf5f5
--- /dev/null
+++ b/man/t03794.Rd
@@ -0,0 +1,23 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/ssb_skogsavvirkning.R
+\name{t03794}
+\alias{t03794}
+\title{Skogsavvirkning bruttoverdi t03794
+bruttoverdi per år av tømmer, SSB tabell 03794}
+\usage{
+t03794(geolevel = "fylke")
+}
+\arguments{
+\item{geolevel}{}
+}
+\value{
+en tibble med hele datasetet.
+}
+\description{
+Tabellen gir totalverdi av tømmer solgt per år og geografisk enhet, fra 1996 til 2018.
+Litt usikker om energivirkesortimenter og ved er med.
+https://www.ssb.no/statbank/list/skogav
+}
+\examples{
+ t03794()
+}
-- 
GitLab