#!/usr/bin/python3 """ Copyright (C) 2023 NIBIO <https://www.nibio.no/>. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. """ import subprocess, os from dotenv import load_dotenv from datetime import datetime import pytz import netCDF4 as nc from jinja2 import Environment, FileSystemLoader load_dotenv() weatherdata_path="in/" tmp_path="tmp/" out_path="out/" # TODO: Make this truly independent of time zones/Norwegian conditions? utc_offset = "+02:00" local_timezone = pytz.timezone("Europe/Oslo") # Calculate cumulated degree days above 5 degrees after 1st of April # Remove all values before April 1st subprocess.run(f"cdo -selname,TM -seldate,2023-04-01T00:00:00,2023-12-31T00:00:00 {weatherdata_path}met_1_0km_nordic-2023.nc {tmp_path}TM_from_april.nc", shell=True) # Subtracting 5 deg C from all cells subprocess.run(f"cdo -subc,5 {tmp_path}TM_from_april.nc {tmp_path}TM_minus_5.nc", shell=True) # Create an .nc file with all cells containing 1 if cell in tgminus5.nc is >=0, 0 otherwise subprocess.run(f"cdo -gtc,0 {tmp_path}TM_minus_5.nc {tmp_path}TM_minus_5_gtc.nc", shell=True) # Multiplying tgminus5.nc with tgminus5gtc.nc, so that all sub zero values are set to 0 subprocess.run(f"cdo -mul {tmp_path}TM_minus_5.nc {tmp_path}TM_minus_5_gtc.nc {tmp_path}TM_minus_5_nozero.nc", shell=True) # Accumulate day degrees with the corrected values subprocess.run(f"cdo -timcumsum {tmp_path}TM_minus_5_nozero.nc {tmp_path}DD_unmasked.nc", shell=True) # Mask the output with Norway land borders subprocess.run(f"cdo -maskregion,Norge_landomrader.csv {tmp_path}DD_unmasked.nc {tmp_path}DD.nc", shell=True) # Add the DD threshold classification => warning status # (A>0)*(A<=260)*2 + (A>260)*(A<=360)*3 + (A>360)*(A<=560)*4 + (A>560)*0 subprocess.run(f'cdo -aexpr,"WARNING_STATUS=(TM>0)*(TM<=260)*2 + (TM>260)*(TM<=360)*3 + (TM>360)*(TM<=560)*4 + (TM>560)*0" {tmp_path}DD.nc {tmp_path}result.nc', shell=True) # Split the combined file into daily .nc files again, with YYYY-MM-DD in the filename. Convert to corresponding GeoTIFF files # Variables that needs discrete classification, must be integers in order for mapserver to work properly (Don't ask!) # Since we need WARNING_STATUS to be discretely classified, we need to create a separate GeoTIFF file for it result = nc.Dataset(f'{tmp_path}result.nc', 'r') timesteps = result.variables["time"][:] #print(timesteps) timestep_index = 1 timestep_dates = [] for timestep in timesteps: timestep_date = datetime.fromtimestamp(timestep).astimezone(local_timezone) file_date = timestep_date.astimezone(local_timezone).strftime("%Y-%m-%d") print(f"{timestep_index}: {file_date}") timestep_dates.append(file_date) # We must delete the GeoTIFF file before merging subprocess.run(f'rm {tmp_path}result_*{file_date}_lcc.tif', shell=True) subprocess.run(f'rm {out_path}result_*{file_date}.tif', shell=True) subprocess.run(f'gdal_translate -ot Int16 -of GTiff -b {timestep_index} NETCDF:"{tmp_path}result.nc":WARNING_STATUS {tmp_path}result_WARNING_STATUS_{file_date}_lcc.tif', shell=True) subprocess.run(f'gdal_translate -ot Float32 -of GTiff -b {timestep_index} NETCDF:"{tmp_path}result.nc":TM {tmp_path}result_{file_date}_lcc.tif', shell=True) # Need to reproject the files, to ensure we have the projection given in the generted mapfile. We always use EPSG:4326 for this subprocess.run(f'gdalwarp -t_srs EPSG:4326 {tmp_path}result_WARNING_STATUS_{file_date}_lcc.tif {out_path}result_WARNING_STATUS_{file_date}.tif', shell=True) subprocess.run(f'gdalwarp -t_srs EPSG:4326 {tmp_path}result_{file_date}_lcc.tif {out_path}result_{file_date}.tif', shell=True) timestep_index = timestep_index + 1 if len(timestep_dates) != len(set(timestep_dates)): print("ERROR: Something is wrong with your timesteps") #print(timestep_dates) print(len(timestep_dates)) # Generate mapfile # The paths should be set in a .env file env = Environment(loader=FileSystemLoader('.')) template = env.get_template("mapfile/template.j2") output = template.render({ "timestep_dates": timestep_dates, "mapserver_data_dir": os.getenv("MAPSERVER_DATA_DIR"), "mapserver_mapfile_dir": os.getenv("MAPSERVER_MAPFILE_DIR"), "mapserver_log_file": os.getenv("MAPSERVER_LOG_FILE"), "mapserver_image_path": os.getenv("MAPSERVER_IMAGE_PATH"), "mapserver_extent": os.getenv("MAPSERVER_EXTENT") }) mapfile_outdir = os.getenv("MAPFILE_DIR") with open(f"{mapfile_outdir}/PSILARTEMP.map", 'w') as f: f.write(output)