
nibio.no PO Box 115, N-1431 Ås, Norway

+47 406 04 100

rswap – an R package for automated and command-
based interaction with the SWAP4.2 model

What?

Moritz Shore & Csilla Farkas

SWAP (Soil-Water-Atmosphere-Plant) is a one-dimensional

process-based model utilizing the Richards’ equation to

calculate water movement within a layered soil profile in the

unsaturated (vadose) zone and upper sections of the saturated

zone (groundwater), accounting for plant and atmospheric

interaction [1,3]. Created in 1974, SWAP has become an

important tool in its domain, and now celebrates a 50th

anniversary in supporting soil-water research, engineering, and

education worldwide [2,3].

1. Translate SWAP parameters, tables, and lists (into R-compatible dataframes)

2. Modify dataframes (using standard R-based operations)

3. Write modified dataframes (into SWAP compatible text files)

1. Detect SWAP file paths (paths to input files, executables, observed data)

2. Translate SWAP parameters, tables, and lists (into R-compatible dataframes)

3. Alter parameter values to match user demands (ie. paths, observed data, settings)

4. Re-write SWAP files (using modified parameter values)

5. Run the model in the R-console (or in parallel)

1. Plotting of model outputs / variables (interactively, and/or with observed data)

2. Model performance using goodness of fit statics (from package hydroGOF)

3. Comparing different model runs (visually / statistically)

1. Sensitivity Analysis (to output variables, performance indicators, Figure 5)

2. Scenario Analysis (under development)

3. Parameter Estimation / Hard calibration / Autocalibration (under development)

4. SWAPtools integration (under development)

5. ...

• For Reproducibility (command based / scripted)

• For Automation (scalability, scenario analysis)

• For Streamlining (more efficiency, less error-prone)

• For Compatibility (with extensive R research software)

• Backwards compatible with existing SWAP
projects (SWAPtools compatibility under development)

• Intuitively flexible and scalable to user
requirements (designed for OPTAIN, a project with 14

different case studies, all with different needs)

• Functional programming with low level access
(core functions are documented and accessible to the user,
allowing low-level custom applications)

• Open sourced and (hopefully) community
driven development (on github.com/moritzshore/rswap)

• Quick-setup functionality (Set up rswap and run SWAP

with a single command: rswap_init())

• Documented with runnable examples (allowing for

ease of use, no steep learning curve)

Figure 3: Interactive multivariate plot of user-chosen input,
output, and observed timeseries.

References

[1] Heinen, Marius, Martin Mulder, and Joop Kroes. SWAP 4: technical addendum to the SWAP documentation.

Wageningen Environmental Research, 2021.

[2] Heinen, M., Mulder, M., van Dam, J., Bartholomeus, R., de Jong van Lier, Q., de Wit, J., de Wit, A., and Hack-ten

Broeke, M.: SWAP 50 year: Advances in modelling soil-water-atmosphere-plant interactions, EGU General Assembly

2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21812, https://doi.org/10.5194/egusphere-egu24-21812, 2024.

[3] Kroes, J. G., Van Dam, J. C., Bartholomeus, R. P., Groenendijk, P., Heinen, M., Hendriks, R. F. A., ... & Van Walsum,

P. E. V. (2017). SWAP version 4: theory description and user manual. Alterra-rapport-Wageningen University and

Research Centre, (2780).

Manual
interaction

Data
Processing

Analysis and
Results

R-based Integrated development environment
(such as RStudio)

rswap setup:

Traditional setup

Figure 1: A visual comparison of a traditional SWAP workflow and the
streamlined rswap workflow, entirely within the RStudio IDE.

v0.5.0

Figure 2: Comparison of two saved model runs with differing
parameter values and the observed timeseries.

EGU24, 2024-04-15, Vienna

This package was developed for the OPTAIN project (https://optain.eu)
and has received funding from the European Union's Horizon 2020
research and innovation program under grant agreement No. 862756.

Further Analysis

Output Analysis

Model Execution

Input manipulation

How?

Notable Features

More details
on the website

moritzshore.github.io/rswap/

Figure 4: Comparison between running SWAP projects in
series and in parallel using rswap. The benchmarking was
done with a model setup which takes 3.14 seconds to run
and was run in parallel on 28 PSOCK threads (Windows).
Parallel running is already quicker at three runs, and 5.5x
faster at 1000 runs. Further improvements are expected
with Linux compatibility and “forking”.

Advanced Functionality

Figure 5: rswap can use its own exported functions to run a
(parallelized) sensitivity analysis for any parameter and
statistical metric using check_swap_sensitivity(). An
interactive plotly plot is created, as well as a dataframe
containing analysis results. rswap uses modify_swap_file(),
run_swap_parallel() and get_swap_performance() for
this functionality.

SWAP 4.2, the latest version [1], takes in input data in the

form of text files (Figure 1, top) and creates output in the same

format, leaving it to the user to process results and modify input

files. While the text-file approach is inherently flexible and

adaptable to most use-cases, it requires users to invest

significant amounts time into setting up their workflows and

creates a “barrier of entry” for initial applications of the model.

rswap is an open-source R-package designed to interface with

SWAP 4.2, allowing users a command-based interaction within

the R-programming environment. By automating common

tasks in model setup, calibration, and analysis, rswap simplifies

and streamlines (Figure 1, bottom) user interaction while

increasing accessibility. rswap accomplishes this using

functional programming with flexible (user-accessible) base

functions (translating text files, loading / converting data)

which go on to support more advanced higher-level functions

such as output analysis (Figures 2, 3) or running SWAP in

parallel (Figure 4).

Corresponding Author:
Moritz Shore
moritz.shore@nibio.no

→The core function of rswap is run_swap(), which runs a SWAP project with a

modified routine using lower level rswap functions. If multiple projects are passed to

this function, they are run in parallel using run_swap_parallel(). The performance

increases outstrip normal running dramatically, as seen in Figure 4, allowing for more

computationally heavy workflows. Further improvements to runtime are planned, such

as “forking” support for Linux and improved handling of input files in memory.

→Parallel running functionality is utilized within the sensitivity analysis function

check_swap_sensitivity() which also employs rswap functions to perform a

sensitivity analysis. The function returns a dataframe of the analysis results, as well as

an interactive plotly plot seen in Figure 5.

→The ability of rswap functions to build upon themselves, such as the two

aforementioned functions allows for an increasingly abstracted (easier) environment

in which to build more and more advanced operations. Planned advanced features

include scenario analysis, parameter estimation and hard-calibration plus ideas

suggested (or implemented) by users on GitHub (github.com/moritzshore/rswap).

EGU24-8608ECS

Why?

https://github.com/moritzshore/rswap

	Slide 1: rswap – an R package for automated and command-based interaction with the SWAP4.2 model

